Vafa Marzang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4364964/publications.pdf

Version: 2024-02-01

		1478505	1720034	
16	227	6	7	
papers	citations	h-index	g-index	
16	16	16	117	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	An Ultra-High Step-Up DC–DC Converter With Extendable Voltage Gain and Soft-Switching Capability. IEEE Transactions on Industrial Electronics, 2020, 67, 9238-9250.	7.9	57
2	A High Step-Up Nonisolated DC–DC Converter With Flexible Voltage Gain. IEEE Transactions on Power Electronics, 2020, 35, 10489-10500.	7.9	56
3	A Modified Triple-Switch Triple-Mode High Step-Up DC–DC Converter. IEEE Transactions on Industrial Electronics, 2022, 69, 8015-8027.	7.9	19
4	An Ultra High Step-Up Dual-Input Single-Output DC–DC Converter Based on Coupled Inductor. IEEE Transactions on Industrial Electronics, 2022, 69, 11023-11034.	7.9	18
5	New Interleaved Structure with High Voltage-Gain and Low Voltage-Stress on Semiconductors. , 2019, , .		15
6	Study and analysis of a DC–DC softâ€switched buck converter. IET Power Electronics, 2020, 13, 1456-1465.	2.1	12
7	An Interleaved High Step-Up DC-DC Converter with Low Voltage-Stress on Semiconductors. , 2020, , .		11
8	Symmetric Extendable Ultra High Step-Up Non-Isolated DC-DC Converter. , 2019, , .		10
9	A new High Step-up Three-Port DC-DC Structure for Hybrid PV/Battery Energy Systems. , 2019, , .		9
10	Analysis, Design, and Investigation of a Soft-Switched Buck Converter With High Efficiency. IEEE Transactions on Power Electronics, 2022, 37, 6899-6912.	7.9	9
11	New auxiliary circuit for boost converter to achieve softâ€switching operation and zero input current ripple. IET Power Electronics, 2020, 13, 3910-3921.	2.1	6
12	Performance Analysis and Reliability Investigation of a High Step-up DC-DC Converter., 2021,,.		3
13	Analysis and Investigation of a Soft-Switched Synchronous Buck Converter., 2021,,.		1
14	Direct Power Control of PWM Three-Phase Rectifier Using the Predictive Method: Aims to Reduce THD. , 2020, , .		1
15	Analysis of a High-efficient Step-Up Converter With ZVS Operation. , 2021, , .		0
16	Increase of the photovoltaic resources power using multi-input DC–DC converter and model-based MPPT algorithm. International Journal of Ambient Energy, 2022, 43, 7501-7512.	2.5	0