Sebastian Reineke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4364948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459, 234-238.	27.8	3,172
2	External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission–Based Organic Photovoltaic Cell. Science, 2013, 340, 334-337.	12.6	783
3	Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Physical Review B, 2007, 75, .	3.2	724
4	White organic light-emitting diodes: Status and perspective. Reviews of Modern Physics, 2013, 85, 1245-1293.	45.6	540
5	Triplet Harvesting in Hybrid White Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2009, 19, 1319-1333.	14.9	430
6	Selective Turn-On Ammonia Sensing Enabled by High-Temperature Fluorescence in Metal–Organic Frameworks with Open Metal Sites. Journal of the American Chemical Society, 2013, 135, 13326-13329.	13.7	409
7	Harvesting Triplet Excitons from Fluorescent Blue Emitters in White Organic Lightâ€Emitting Diodes. Advanced Materials, 2007, 19, 3672-3676.	21.0	406
8	Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nature Photonics, 2020, 14, 636-642.	31.4	331
9	Highâ€Efficiency Red Organic Lightâ€Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Advanced Materials, 2019, 31, e1902368.	21.0	238
10	Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. Journal of Applied Physics, 2008, 104, .	2.5	212
11	Room temperature triplet state spectroscopy of organic semiconductors. Scientific Reports, 2014, 4, 3797.	3.3	180
12	Blueâ€Lightâ€Absorbing Thin Films Showing Ultralong Roomâ€Temperature Phosphorescence. Advanced Materials, 2019, 31, e1807887.	21.0	167
13	Recent advances in light outcoupling from white organic light-emitting diodes. Journal of Photonics for Energy, 2015, 5, 057607.	1.3	158
14	Complementary LED technologies. Nature Materials, 2015, 14, 459-462.	27.5	144
15	Reduced efficiency roll-off in high-efficiency hybrid white organic light-emitting diodes. Applied Physics Letters, 2008, 92, 053311.	3.3	138
16	Programmable transparent organic luminescent tags. Science Advances, 2019, 5, eaau7310.	10.3	138
17	Highly Efficient White Top-Emitting Organic Light-Emitting Diodes Comprising Laminated Microlens Films. Nano Letters, 2012, 12, 424-428.	9.1	136
18	Reduced efficiency roll-off in phosphorescent organic light emitting diodes by suppression of triplet-triplet annihilation. Applied Physics Letters, 2007, 91, .	3.3	131

#	Article	IF	CITATIONS
19	Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses. Nature Materials, 2019, 18, 459-464.	27.5	131
20	Aromatic Phosphonates: A Novel Group of Emitters Showing Blue Ultralong Room Temperature Phosphorescence. Advanced Materials, 2020, 32, e2000880.	21.0	118
21	High-performance organic light-emitting diodes comprising ultrastable glass layers. Science Advances, 2018, 4, eaar8332.	10.3	113
22	Highly Luminescent and Water-Resistant CsPbBr ₃ –CsPb ₂ Br ₅ Perovskite Nanocrystals Coordinated with Partially Hydrolyzed Poly(methyl methacrylate) and Polyethylenimine. ACS Nano, 2019, 13, 10386-10396.	14.6	110
23	Conjugationâ€Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Nonâ€TADF Units to TADFâ€Active Polymers. Advanced Functional Materials, 2017, 27, 1605051.	14.9	109
24	Highly phosphorescent organic mixed films: The effect of aggregation on triplet-triplet annihilation. Applied Physics Letters, 2009, 94, 163305.	3.3	101
25	Storage of charge carriers on emitter molecules in organic light-emitting diodes. Physical Review B, 2012, 86, .	3.2	98
26	Phosphorescence meets its match. Nature Photonics, 2014, 8, 269-270.	31.4	94
27	Adjustable white-light emission from a photo-structured micro-OLED array. Light: Science and Applications, 2016, 5, e16121-e16121.	16.6	92
28	Optical Energy Losses in Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800667.	7.3	91
29	Synthesis of Vinyleneâ€Linked Twoâ€Dimensional Conjugated Polymers via the Horner–Wadsworth–Emmons Reaction. Angewandte Chemie - International Edition, 2020, 59, 23620-23625.	13.8	86
30	Spin-dependent charge transfer state design rules in organic photovoltaics. Nature Communications, 2015, 6, 6415.	12.8	83
31	Improved Highâ€Brightness Efficiency of Phosphorescent Organic LEDs Comprising Emitter Molecules with Small Permanent Dipole Moments. Advanced Materials, 2010, 22, 3189-3193.	21.0	82
32	Highly efficient white organic light-emitting diodes based on fluorescent blue emitters. Journal of Applied Physics, 2010, 108, .	2.5	78
33	Highly efficient, dual state emission from an organic semiconductor. Applied Physics Letters, 2013, 103,	3.3	76
34	Recent progress in the understanding of exciton dynamics within phosphorescent OLEDs. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2341-2353.	1.8	74
35	White top-emitting organic light-emitting diodes with forward directed emission and high color quality. Organic Electronics, 2010, 11, 1676-1682.	2.6	67
36	Hyperbranched Polymers with High Transparency and Inherent High Refractive Index for Application in Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 2545-2553.	14.9	67

#	Article	IF	CITATIONS
37	Simultaneous Singlet–Singlet and Triplet–Singlet Förster Resonance Energy Transfer from a Single Donor Material. Journal of Physical Chemistry Letters, 2019, 10, 310-315.	4.6	65
38	Three-terminal RGB full-color OLED pixels for ultrahigh density displays. Scientific Reports, 2018, 8, 9684.	3.3	55
39	Measurement of triplet exciton diffusion in organic light-emitting diodes. Physical Review B, 2010, 81, .	3.2	54
40	Nanostructured Singlet Fission Photovoltaics Subject to Tripletâ€Charge Annihilation. Advanced Materials, 2014, 26, 1366-1371.	21.0	51
41	Influence of the hole blocking layer on blue phosphorescent organic light-emitting devices using 3,6-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole as host material. Applied Physics Letters, 2010, 96, .	3.3	48
42	Luminescent sp ² -Carbon-Linked 2D Conjugated Polymers with High Photostability. Chemistry of Materials, 2020, 32, 7985-7991.	6.7	48
43	Organic light-emitting diodes for lighting: High color quality by controlling energy transfer processes in host-guest-systems. Journal of Applied Physics, 2012, 111, 033102.	2.5	44
44	Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes. Nature Communications, 2019, 10, 2972.	12.8	44
45	Interplay of Fluorescence and Phosphorescence in Organic Biluminescent Emitters. Journal of Physical Chemistry C, 2017, 121, 14946-14953.	3.1	43
46	Biluminescence Under Ambient Conditions: Waterâ€Soluble Organic Emitter in Highâ€Oxygenâ€Barrier Polymer. Advanced Optical Materials, 2020, 8, 2000427.	7.3	39
47	Hydrofluoroethers as heat-transfer fluids for OLEDs: Operational range, stability, and efficiency improvement. Organic Electronics, 2012, 13, 356-360.	2.6	37
48	Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses. Physical Review B, 2015, 92, .	3.2	34
49	Experimental proof of Joule heating-induced switched-back regions in OLEDs. Light: Science and Applications, 2020, 9, 5.	16.6	34
50	Quantum efficiency enhancement in top-emitting organic light-emitting diodes as a result of enhanced intrinsic quantum yield. Applied Physics Letters, 2006, 89, 263512.	3.3	32
51	Viologenâ€Immobilized 2D Polymer Film Enabling Highly Efficient Electrochromic Device for Solarâ€Powered Smart Window. Advanced Materials, 2022, 34, e2106073.	21.0	32
52	Direct observation of host-guest triplet-triplet annihilation in phosphorescent solid mixed films. Physica Status Solidi - Rapid Research Letters, 2009, 3, 67-69.	2.4	31
53	Organic Light-Emitting Diodes Based on Conjugation-Induced Thermally Activated Delayed Fluorescence Polymers: Interplay Between Intra- and Intermolecular Charge Transfer States. Frontiers in Chemistry, 2019, 7, 688.	3.6	29
54	High Electron Affinity Molecular Dopant CN6-CP for Efficient Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 11660-11666.	8.0	29

#	Article	IF	CITATIONS
55	Reduced Intrinsic Nonâ€Radiative Losses Allow Roomâ€Temperature Triplet Emission from Purely Organic Emitters. Advanced Materials, 2021, 33, e2101844.	21.0	28
56	High‣peed and Continuousâ€Wave Programmable Luminescent Tags Based on Exclusive Room Temperature Phosphorescence (RTP). Advanced Science, 2021, 8, e2102104.	11.2	28
57	White top-emitting organic light-emitting diodes employing a heterostructure of down-conversion layers. Organic Electronics, 2011, 12, 2126-2130.	2.6	27
58	Integrated optical model for organic light-emitting devices. Journal of Applied Physics, 2011, 109, 083114.	2.5	27
59	Statistical treatment of Photoluminescence Quantum Yield Measurements. Scientific Reports, 2019, 9, 15638.	3.3	27
60	Measurement and simulation of exciton decay times in organic light-emitting devices with different layer structures. Optics Letters, 2009, 34, 1375.	3.3	24
61	White organic light-emitting diodes with 4 nm metal electrode. Applied Physics Letters, 2015, 107, .	3.3	24
62	Full Electrothermal OLED Model Including Nonlinear Self-heating Effects. Physical Review Applied, 2018, 10, .	3.8	24
63	Transparent and color-tunable organic light-emitting diodes with highly balanced emission to both sides. Organic Electronics, 2017, 41, 315-318.	2.6	23
64	Coupled Optical Modeling for Optimization of Organic Light-Emitting Diodes with External Outcoupling Structures. ACS Photonics, 2018, 5, 422-430.	6.6	23
65	Exploiting lateral current flow due to doped layers in semiconductor devices having crossbar electrodes. Organic Electronics, 2019, 65, 82-90.	2.6	23
66	Investigating the molecular orientation of Ir(ppy)3 and Ir(ppy)2(acac) emitter complexes by X-ray diffraction. Organic Electronics, 2018, 53, 198-204.	2.6	22
67	Efficiency of Light Outcoupling Structures in Organic Lightâ€Emitting Diodes: 2D TiO ₂ Array as a Model System. Advanced Functional Materials, 2019, 29, 1901748.	14.9	21
68	Color temperature tuning of white organic light-emitting diodes via spatial control of micro-cavity effects based on thin metal strips. Organic Electronics, 2015, 26, 334-339.	2.6	19
69	Selectively absorbing small-molecule solar cells for self-powered electrochromic windows. Nano Energy, 2021, 89, 106404.	16.0	19
70	Photoluminescence degradation of blue OLED emitters. Proceedings of SPIE, 2008, , .	0.8	18
71	Synthese von Vinylâ€verknüpften zweidimensionalen konjugierten Polymeren via Hornerâ€Wadsworthâ€Emmonsâ€Reaktion. Angewandte Chemie, 2020, 132, 23827-23832.	2.0	18
72	Scattering quantified: Evaluation of corrugation induced outcoupling concepts in organic light-emitting diodes. Organic Electronics, 2018, 58, 250-256.	2.6	17

#	Article	IF	CITATIONS
73	36â€1: <i>Invited Paper</i> : 2 nd Generation Organics: High Power Efficiency, Ultra Long Life, and Lowâ€Cost OLED Devices. Digest of Technical Papers SID International Symposium, 2007, 38, 1282-1285.	0.3	16
74	Measuring carrier mobility in conventional multilayer organic light emitting devices by delayed exciton generation. Physica Status Solidi (B): Basic Research, 2008, 245, 804-809.	1.5	16
75	Introducing pinMOS Memory: A Novel, Nonvolatile Organic Memory Device. Advanced Functional Materials, 2020, 30, 1907119.	14.9	15
76	Polymer Featuring Thermally Activated Delayed Fluorescence as Emitter in Light-Emitting Electrochemical Cells. Journal of Physical Chemistry Letters, 2020, 11, 6227-6234.	4.6	15
77	Investigation of Thermally Activated Delayed Fluorescence from a Donor–Acceptor Compound with Time-Resolved Fluorescence and Density Functional Theory Applying an Optimally Tuned Range-Separated Hybrid Functional. Journal of Physical Chemistry A, 2020, 124, 1535-1553.	2.5	15
78	Novel organic light-emitting diode design for future lasing applications. Organic Electronics, 2017, 48, 132-137.	2.6	14
79	Real-time beam shaping without additional optical elements. Light: Science and Applications, 2018, 7, 18.	16.6	14
80	Fast and cost effective fabrication of microlens arrays for enhancing light out-coupling of organic light-emitting diodes. Materials Letters, 2019, 252, 268-271.	2.6	14
81	Electrothermal Feedback and Absorption-Induced Open-Circuit-Voltage Turnover in Solar Cells. Physical Review Applied, 2018, 9, .	3.8	13
82	Thermally Activated Delayed Fluorescence in a Y ₃ N@C ₈₀ Endohedral Fullerene: Timeâ€Resolved Luminescence and EPR Studies. Angewandte Chemie - International Edition, 2018, 57, 277-281.	13.8	12
83	Ultrathin MoO3Layers in Composite Metal Electrodes: Improved Optics Allow Highly Efficient Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1801262.	7.3	12
84	Efficiency and lifetime enhancement of phosphorescent organic devices. Proceedings of SPIE, 2008, , .	0.8	11
85	Organic light-emitting diodes. , 2019, , 695-726.		11
86	Conjugation-Induced Thermally Activated Delayed Fluorescence: Photophysics of a Carbazole-Benzophenone Monomer-to-Tetramer Molecular Series. Journal of Physical Chemistry A, 2021, 125, 1345-1354.	2.5	11
87	Inside or outside: Evaluation of the efficiency enhancement of OLEDs with applied external scattering layers. Scientific Reports, 2019, 9, 18601.	3.3	10
88	Dimers or Solid‧tate Solvation? Intermolecular Effects of Multiple Donor–Acceptor Thermally Activated Delayed Fluorescence Emitter Determining Organic Lightâ€Emitting Diode Performance. Advanced Optical Materials, 2021, 9, 2002153.	7.3	10
89	Straight-forward control of the degree of micro-cavity effects in organic light-emitting diodes based on a thin striped metal layer. Organic Electronics, 2013, 14, 2444-2450.	2.6	9
90	Cool white light-emitting three stack OLED structures for AMOLED display applications. Optics Express, 2016, 24, 28131.	3.4	9

#	Article	IF	CITATIONS
91	Quantitative analysis of charge transport in intrinsic and doped organic semiconductors combining steady-state and frequency-domain data. Journal of Applied Physics, 2018, 124, .	2.5	9
92	Dissecting Tetra- <i>N</i> -phenylbenzidine: Biphenyl as the Origin of Room Temperature Phosphorescence. Journal of Physical Chemistry A, 2020, 124, 479-485.	2.5	9
93	Optical Properties of Perovskiteâ€Organic Multiple Quantum Wells. Advanced Science, 2022, 9, .	11.2	9
94	3D electrothermal simulations of organic LEDs showing negative differential resistance. Optical and Quantum Electronics, 2017, 49, 1.	3.3	8
95	Investigating Free Charge arrier Recombination in Organic LEDs Using Openâ€Circuit Conditions. Advanced Optical Materials, 2019, 7, 1801426.	7.3	8
96	Electrothermal Tristability Causes Sudden Burnâ€In Phenomena in Organic LEDs. Advanced Functional Materials, 2021, 31, 2106716.	14.9	8
97	Tailoring Organic LEDs for Bidirectional Optogenetic Control via Dualâ€Color Switching. Advanced Functional Materials, 2022, 32, 2110590.	14.9	8
98	High performance two-color hybrid TADF-phosphorescent WOLEDs with bimodal Förster and Dexter-type exciton distribution. Organic Electronics, 2019, 75, 105365.	2.6	7
99	Editorial: Recent Advances in Thermally Activated Delayed Fluorescence Materials. Frontiers in Chemistry, 2020, 8, 625910.	3.6	7
100	Refined Setup for Angle-Resolved Photoluminescence Spectroscopy of Thin Films. Physical Review Applied, 2020, 14, .	3.8	7
101	Organic light-emitting diodes with split recombination zones: A concept for versatile color tuning. Organic Electronics, 2020, 78, 105558.	2.6	6
102	Novel concepts for OLED lighting. Proceedings of SPIE, 2010, , .	0.8	5
103	Locking excitons in two-dimensional emitting layers for efficient monochrome and white organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 8929-8937.	5.5	5
104	Purely Organic Microparticles Showing Ultralong Room Temperature Phosphorescence. ACS Omega, 2021, 6, 13087-13093.	3.5	5
105	White Organic Light-Emitting Diodes with Fluorescent Tube Efficiency. Materials Research Society Symposia Proceedings, 2009, 1212, 1.	0.1	4
106	Influence of the Dielectric Constant around an Emitter on Its Delayed Fluorescence. Physical Review Applied, 2019, 12, .	3.8	4
107	Orientation of OLED Emitter Molecules Revealed by XRD. , 2016, , .		4
108	Organic Dye-Doped PMMA Lasing. Polymers, 2021, 13, 3566.	4.5	4

#	Article	IF	CITATIONS
109	Parameter optimization of light outcoupling structures for high-efficiency organic light-emitting diodes. Journal of Applied Physics, 2020, 128, 185501.	2.5	4
110	Detailed analysis of exciton decay time change in organic lightâ€emitting devices caused by optical effects. Journal of the Society for Information Display, 2011, 19, 80-86.	2.1	3
111	Influence of the Electron Blocking Layer on the Performance of Multilayer White Organic Light-Emitting Diodes. Materials Research Society Symposia Proceedings, 2012, 1402, 84.	0.1	3
112	Influence of bilayer resist processing on p-i-n OLEDs: towards multicolor photolithographic structuring of organic displays. Proceedings of SPIE, 2015, , .	0.8	3
113	New concept for organic light-emitting devices under high excitations using emission from a metal-free area. Proceedings of SPIE, 2016, , .	0.8	3
114	Pâ€176: Quantitative Analysis of Charge Transport in Singleâ€Carrier Devices and OLEDs Combining DC and AC Data. Digest of Technical Papers SID International Symposium, 2019, 50, 1895-1898.	0.3	3
115	Analysis and optimization of light outcoupling in OLEDs with external hierarchical textures. Optics Express, 2021, 29, 23701.	3.4	3
116	3â€2: <i>Invited Paper</i> : Color on Demand – Colorâ€Tunable OLEDs for Lighting and Displays. Digest of Technical Papers SID International Symposium, 2017, 48, 5-8.	0.3	2
117	Thermally Activated Delayed Fluorescence in a Y ₃ N@C ₈₀ Endohedral Fullerene: Timeâ€Resolved Luminescence and EPR Studies. Angewandte Chemie, 2018, 130, 283-287.	2.0	2
118	Impact of Fabrication Processes of Small-Molecule-Doped Polymer Thin-Films on Room-Temperature Phosphorescence. Frontiers in Physics, 2022, 10, .	2.1	2
119	Zeit für eine neue Lichtquelle. Physik in Unserer Zeit, 2009, 40, 170-171.	0.0	1
120	White organic light-emitting diodes with top-emitting structure for high color quality and forward-directed light emission. Proceedings of SPIE, 2010, , .	0.8	1
121	Ultrathin Silver Electrodes for Transparent Organic Light-Emitting Diodes. , 2014, , .		1
122	OLEDs: light-emitting thin film thermistors revealing advanced self-heating effects. , 2015, , .		1
123	Modeling and simulation of electrothermal feedback in large-area organic LEDs. , 2017, , .		1
124	Radically more stable. Nature Materials, 2019, 18, 917-918.	27.5	1
125	Durchblick in Optik. , 2019, , .		1
126	26â€1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes Comprising Ultrastable Glass Layers. Digest of Technical Papers SID International Symposium, 2019, 50, 356-359.	0.3	1

#	Article	IF	CITATIONS
127	Organic Electronics and Beyond. Advanced Optical Materials, 2021, 9, 2101108.	7.3	1
128	Angular resolved photoluminescence from non-ideal emission spots (Conference Presentation). , 2018, , .		1
129	Improved light outcoupuling of organic light-emitting diodes by combined optimization of thin film layers and external textures. , 2018, , .		1
130	Bragg scattering of non-radiative modes in red top-emitting organic light emitting diodes with variation of cavity length. , 2016, , .		1
131	Electrothermal Tristability Causes Sudden Burnâ€In Phenomena in Organic LEDs (Adv. Funct. Mater.) Tj ETQq1 1	0.784314 14.9	rgBT /Overlo
132	25.2: <i>Invited Paper</i> : Concepts for Highly Efficient White OLEDs. Digest of Technical Papers SID International Symposium, 2010, 41, 353-356.	0.3	0
133	Leuchtende Zukunft für effiziente weiße OLEDs. Optik & Photonik, 2010, 5, 32-35.	0.2	0
134	Doping as a versatile tool to realize highly efficient organic devices. , 2011, , .		0
135	72.4: Invited Paper: Novel Approaches for OLED Lighting. Digest of Technical Papers SID International Symposium, 2011, 42, 1067-1070.	0.3	0
136	Four color stacked white organic light-emitting diodes utilizing the concept of triplet harvesting. Materials Research Society Symposia Proceedings, 2011, 1286, 1.	0.1	0
137	51.3: Topâ€Emitting OLEDs for Solid State Lighting: High Efficiency by Optical Modeling. Digest of Technical Papers SID International Symposium, 2012, 43, 691-693.	0.3	0
138	Quantification of charge carrier density in organic light-emitting diodes by time-resolved electroluminescence. Proceedings of SPIE, 2012, , .	0.8	0
139	Replacing ITO - Ultrathin metal electrodes for flexible OLEDs , 2016, , .		0
140	Exploiting absorption-induced self-heating in solar cells (Conference Presentation). , 2017, , .		0
141	Oxygen sensing with an absolute optical sensor based on biluminescence (Conference Presentation). , 2017, , .		0
142	Steering light of OLEDs: cavity design and driving scheme. , 2017, , .		0
143	84â€3: <i>Invited Paper:</i> Organic Lightâ€Emitting Diode Beam Shaping: Pixel Design for Variable Angular Emission Profile Control. Digest of Technical Papers SID International Symposium, 2018, 49, 1143-1146.	0.3	0
144	38.1: Quantitative Analysis of Charge Transport in Single arrier Devices and OLEDs Combining DC and AC Data. Digest of Technical Papers SID International Symposium, 2019, 50, 414-417.	0.3	0

#	Article	IF	CITATIONS
145	Suppressing exciton deconfinement and dissociation for efficient thermally activated delayed fluorescence OLEDs. Journal of Applied Physics, 2021, 130, 155501.	2.5	0
146	Simultaneous fluorescence and phosphorescence from organic molecules. SPIE Newsroom, 0, , .	0.1	0
147	Warm-white hybrid emission from TADF and phosphorescence and its application in OLEDs (Conference) Tj ETQq1	1 0.7843	814 rgBT /O
148	Tweaking the performance of OLEDs with ultrastable glass layers (Conference Presentation). , 2018, , .		0
149	Nah und fern, groß und klein: Optische GerÃze und Spiegel. , 2019, , 73-92.		0
150	Von Joghurt, Displays und 3D-Filmen: Polarisation. , 2019, , 125-153.		0
151	Wechselnde Wirkung durch Wechselwirkung: Interferenz. , 2019, , 155-203.		0
152	Von heißen Körpern zur Quantenphysik: Das Licht als Teilchen. , 2019, , 205-218.		0
153	Rewritable and flexible high-contrast tags using switchable organic room temperature phosphorescence (Conference Presentation). , 2020, , .		Ο
154	Donor-acceptor organic optoelectronics exhibiting both efficient emission and charge-generating properties. , 2020, , .		0
155	Light Management Foils with Hierarchical Textures for Light Outcoupling in OLEDs. , 2021, , .		0
156	Rewritable luminescent tags using room-temperature phosphorescence (RTP) (Conference) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 302 T

157	Organic light-emitting diodes for high-brightness operation: self-heating and switched-back regions (Conference Presentation). , 2020, , .	0

158 The importance of statistics for photoluminescence quantum yield measurements (Conference) Tj ETQq0 0 0 rgBT /Overlock d 0 Tf 50 22

Low-cost strategy for processing hierarchical surface textures on PET foils with modified wetting 0 behavior and increased outcoupling efficiency for OLEDs. , 2022, , .