List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/436487/publications.pdf Version: 2024-02-01

		19657	26613
278	14,391	61	107
papers	citations	h-index	g-index
337 all docs	337 docs citations	337 times ranked	13579 citing authors

MONE 7AIDL

#	Article	IF	CITATIONS
1	Metabolic Bone Disease and Osteoporosis. , 2022, , 119-146.		Ο
2	FSH blockade improves cognition in mice with Alzheimer's disease. Nature, 2022, 603, 470-476.	27.8	131
3	Reverse cholesterol transport and hepatic osteodystrophy. Cell Metabolism, 2022, 34, 347-349.	16.2	5
4	Serum FSH Is Associated With BMD, Bone Marrow Adiposity, and Body Composition in the AGES-Reykjavik Study of Older Adults. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1156-e1169.	3.6	30
5	The NO–cGMP–PKG pathway in skeletal remodeling. Annals of the New York Academy of Sciences, 2021, 1487, 21-30.	3.8	23
6	Bone resorption goes green. Cell, 2021, 184, 1137-1139.	28.9	3
7	The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. ELife, 2021, 10, .	6.0	18
8	Rigorous review and editorial oversight of clinical preprints. ELife, 2021, 10, .	6.0	2
9	FSH Level and Changes in Bone Mass and Body Composition in Older Women and Men. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2876-2889.	3.6	9
10	Thyrotropin, Hyperthyroidism, and Bone Mass. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4809-e4821.	3.6	10
11	The role of PDGF-BB in the bone-vascular relationship during aging. Journal of Clinical Investigation, 2021, 131, .	8.2	9
12	Getting Warmer: Following One's Gut to Build Bone. Cell Metabolism, 2020, 32, 504-506.	16.2	2
13	The Life and Works of Solomon Epstein, MD, FRCP (1940–2020). Journal of Bone and Mineral Research, 2020, 35, 829-830.	2.8	Ο
14	Participation in Health Services/Population Health Research in US Departments of Medicine. American Journal of Medicine, 2020, 133, 1354-1359.	1.5	0
15	The Human TSHβ Subunit Proteins and Their Binding Sites on the TSH Receptor Using Molecular Dynamics Simulation. Endocrinology, 2020, 161, .	2.8	1
16	First-in-class humanized FSH blocking antibody targets bone and fat. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28971-28979.	7.1	35
17	Beyond bone biology: Lessons from team science. Journal of Orthopaedic Research, 2020, 38, 2331-2338.	2.3	0
18	Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14386-14394.	7.1	16

#	Article	IF	CITATIONS
19	Biology of Calcitonin as An Osteoprotective Agent. , 2020, , 599-607.		Ο
20	Implementing a "publish, then review" model of publishing. ELife, 2020, 9, .	6.0	25
21	Posttransplant Bone Loss. , 2020, , 23-32.		0
22	Cathepsin K and Bone Resorption. , 2020, , 273-278.		1
23	In Memoriam 2020. Journal of Bone and Mineral Research, 2020, 35, 2470-2470.	2.8	0
24	Convergence Research Unmasks Drug Targets Beyond Bone. , 2020, , 723-729.		0
25	Bone Loss and Body Composition Across The Menopausal Transition. , 2020, , 1-9.		0
26	Cellular Ionic Homeostatic Processes in Osteoclastic Bone Resorption. , 2020, , 279-289.		0
27	Regulation of Bone Mass and Body Composition by Anterior Pituitary Hormones. , 2020, , 503-518.		0
28	The high-density lipoprotein receptor Scarb1 is required for normal bone differentiation in vivo and in vitro. Laboratory Investigation, 2019, 99, 1850-1860.	3.7	13
29	Reply to Graham et al.: In silico atomistic coordinates and molecular dynamics simulation trajectories of the glucocerebrosidase–saposin C complex. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11101-11102.	7.1	1
30	Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages. FASEB Journal, 2019, 33, 9167-9181.	0.5	16
31	Drug Repurposing by Connectivity Mapping and Structural Modeling. , 2019, , 609-623.		0
32	Endothelial cells revealed as chondroclasts. Nature Cell Biology, 2019, 21, 417-419.	10.3	2
33	Mechanism of glucocerebrosidase activation and dysfunction in Gaucher disease unraveled by molecular dynamics and deep learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5086-5095.	7.1	54
34	FSH Beyond Fertility. Frontiers in Endocrinology, 2019, 10, 136.	3.5	45
35	Oxytocin regulates body composition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26808-26815.	7.1	34
36	Erythroferrone Regulates Bone Remodeling in β-Thalassemia. Blood, 2019, 134, 2-2.	1.4	5

37	FSH-metabolic circuitry and menopause. Journal of Molecular Endocrinology, 2019, 63, R73-R80.	2.5	22
38	SAT-558 Tsh Modulation Of Bone Biology - Further Evidence From A Recombinant Tsh-β Variant Journal of the Endocrine Society, 2019, 3, .	0.2	0
39	Epitope-specific monoclonal antibodies to FSHÎ ² increase bone mass. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2192-2197.	7.1	65
40	Best Practices for Physician-Scientist Training Programs: Recommendations from the Alliance for Academic Internal Medicine. American Journal of Medicine, 2018, 131, 578-584.	1.5	15
41	Actions of pituitary hormones beyond traditional targets. Journal of Endocrinology, 2018, 237, R83-R98.	2.6	45
42	FSIP1 regulates autophagy in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13075-13080.	7.1	27
43	Regulation of Skeletal Homeostasis. Endocrine Reviews, 2018, 39, 701-718.	20.1	59
44	Receptor becomes a ligand to control bone remodelling. Nature, 2018, 561, 180-181.	27.8	10
45	Emerging concepts in the epidemiology, pathophysiology, and clinical care of osteoporosis across the menopausal transition. Matrix Biology, 2018, 71-72, 70-81.	3.6	31
46	FSH, Bone Mass, Body Fat, and Biological Aging. Endocrinology, 2018, 159, 3503-3514.	2.8	40
47	Training the physician-scientist: views from program directors and aspiring young investigators. JCI Insight, 2018, 3, .	5.0	32
48	Opening windows for bone remodeling through a SLIT. Journal of Clinical Investigation, 2018, 128, 1255-1257.	8.2	13
49	Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1933-E1940.	7.1	106
50	Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature, 2017, 546, 107-112.	27.8	250
51	Contemporaneous reproduction of preclinical science: a case study of FSH and fat. Annals of the New York Academy of Sciences, 2017, 1404, 17-19.	3.8	12
52	Clinical, genetic, and structural basis of apparent mineralocorticoid excess due to 11β-hydroxysteroid dehydrogenase type 2 deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11248-E11256.	7.1	48
53	FSIP1 binds HER2 directly to regulate breast cancer growth and invasiveness. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7683-7688.	7.1	22
54	Expanding the Role of Thyroid-Stimulating Hormone in Skeletal Physiology. Frontiers in Endocrinology, 2017, 8, 252.	3.5	34

#	Article	IF	CITATIONS
55	Pituitary Hormone-Driven Mechanism for Skeletal Loss. Molecular and Integrative Toxicology, 2017, , 317-334.	0.5	1
56	Noninvasive Prenatal Diagnosis of Congenital Adrenal Hyperplasia. Endocrine Development, 2016, 30, 37-41.	1.3	14
57	Intravenous Pamidronate is Associated with Reduced Mortality in Patients with Chronic Critical Illness. Endocrine Practice, 2016, 22, 799-808.	2.1	16
58	Closing the loop on the bone-resorbing osteoclast. Nature Medicine, 2016, 22, 460-461.	30.7	8
59	Pituitary-bone connection in skeletal regulation. Hormone Molecular Biology and Clinical Investigation, 2016, 28, 85-94.	0.7	15
60	Enhanced osteoclastogenesis by mitochondrial retrograde signaling through transcriptional activation of the cathepsin K gene. Annals of the New York Academy of Sciences, 2016, 1364, 52-61.	3.8	9
61	A rare <i>CYP21A2</i> mutation in a congenital adrenal hyperplasia kindred displaying genotype–phenotype nonconcordance. Annals of the New York Academy of Sciences, 2016, 1364, 5-10.	3.8	11
62	A novel mutation in <i>HSD11B2</i> causes apparent mineralocorticoid excess in an Omani kindred. Annals of the New York Academy of Sciences, 2016, 1376, 65-71.	3.8	8
63	Anabolic actions of Notch on mature bone. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2152-61.	7.1	46
64	MicroRNA 874-3p Exerts Skeletal Anabolic Effects Epigenetically during Weaning by Suppressing Hdac1 Expression. Journal of Biological Chemistry, 2016, 291, 3959-3966.	3.4	30
65	Functions of vasopressin and oxytocin in bone mass regulation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 164-169.	7.1	54
66	From the gut to the strut: where inflammation reigns, bone abstains. Journal of Clinical Investigation, 2016, 126, 2045-2048.	8.2	21
67	The ââ,¬Å"Love Hormoneââ,¬Â•Oxytocin Regulates the Loss and Gain of the Fatââ,¬â€œBone Relationship. Frontiers in Endocrinology, 2015, 6, 79.	3.5	18
68	Questioning the association between bisphosphonates and atypical femoral fractures. Annals of the New York Academy of Sciences, 2015, 1335, 1-9.	3.8	16
69	The myokine irisin increases cortical bone mass. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12157-12162.	7.1	372
70	Metabolic Bone Disease Following Organ Transplantation. , 2015, , 185-206.		0
71	Oxytocin and bone. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R970-R977.	1.8	27
72	Osteoblast regulation via ligand-activated nuclear trafficking of the oxytocin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16502-16507.	7.1	63

#	Article	IF	CITATIONS
73	Repurposing of bisphosphonates for the prevention and therapy of nonsmall cell lung and breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17995-18000.	7.1	52
74	Bisphosphonates inactivate human EGFRs to exert antitumor actions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17989-17994.	7.1	57
75	Glucocerebrosidase 2 gene deletion rescues type 1 Gaucher disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4934-4939.	7.1	85
76	Noninvasive Prenatal Diagnosis of Congenital Adrenal Hyperplasia Using Cell-Free Fetal DNA in Maternal Plasma. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1022-E1030.	3.6	270
77	Tumour stem cells in bone. Nature, 2013, 499, 414-416.	27.8	5
78	Mechanisms of action of adrenocorticotropic hormone and other melanocortins relevant to the clinical management of patients with multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 130-136.	3.0	78
79	Genotype–phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2611-2616.	7.1	317
80	Structure–phenotype correlations of human CYP21A2 mutations in congenital adrenal hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2605-2610.	7.1	107
81	Anabolic steroids reduce spinal cord injury-related bone loss in rats associated with increased Wnt signaling. Journal of Spinal Cord Medicine, 2013, 36, 616-622.	1.4	43
82	Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proceedings of the United States of America, 2013, 110, 18644-18649.	7.1	120
83	Genetic confirmation for a central role for TNFÂ in the direct action of thyroid stimulating hormone on the skeleton. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9891-9896.	7.1	35
84	Smoke carcinogens cause bone loss through the aryl hydrocarbon receptor and induction of Cyp1 enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11115-11120.	7.1	101
85	The Central Nervous System (CNS)-independent Anti-bone-resorptive Activity of Muscle Contraction and the Underlying Molecular and Cellular Signatures. Journal of Biological Chemistry, 2013, 288, 13511-13521.	3.4	53
86	Bone Marrow Oxytocin Mediates the Anabolic Action of Estrogen on the Skeleton. Journal of Biological Chemistry, 2012, 287, 29159-29167.	3.4	66
87	Blocking antibody to the β-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14574-14579.	7.1	129
88	Double protection for weakened bones. Nature, 2012, 485, 47-48.	27.8	15
89	Intravenous Ibandronate Acutely Reduces Bone Hyperresorption in Chronic Critical Illness. Journal of Intensive Care Medicine, 2012, 27, 312-318.	2.8	24
90	Minireview: The Link Between Fat and Bone: Does Mass Beget Mass?. Endocrinology, 2012, 153, 2070-2075.	2.8	52

#	Article	IF	CITATIONS
91	Special Stem Cells for Bone. Cell Stem Cell, 2012, 10, 233-234.	11.1	11
92	Blocking FSH action attenuates osteoclastogenesis. Biochemical and Biophysical Research Communications, 2012, 422, 54-58.	2.1	54
93	Disease-drug pairs revealed by computational genomic connectivity mapping on GBA1 deficient, Gaucher disease mice. Biochemical and Biophysical Research Communications, 2012, 422, 573-577.	2.1	12
94	Gaucher disease gene <i>GBA</i> functions in immune regulation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10018-10023.	7.1	70
95	Vitamin C Prevents Hypogonadal Bone Loss. PLoS ONE, 2012, 7, e47058.	2.5	22
96	Further evidence that FSH causes bone loss independently of low estrogen. Endocrine, 2012, 41, 171-175.	2.3	19
97	Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. Journal of Clinical Investigation, 2012, 122, 3737-3741.	8.2	83
98	Pituitary Hormones and the Pathophysiology of Osteoporosis. , 2012, , 87-100.		0
99	The Influence of Thyroid-Stimulating Hormone and Thyroid-Stimulating Hormone Receptor Antibodies on Osteoclastogenesis. Thyroid, 2011, 21, 897-906.	4.5	62
100	Regulated production of the pituitary hormone oxytocin from murine and human osteoblasts. Biochemical and Biophysical Research Communications, 2011, 411, 512-515.	2.1	47
101	Translational musculoskeletal science: Is sarcopenia the next clinical target after osteoporosis?. Annals of the New York Academy of Sciences, 2011, 1237, 95-105.	3.8	131
102	Adrenergic stimulation decreases osteoblast oxytocin synthesis. Annals of the New York Academy of Sciences, 2011, 1237, 53-57.	3.8	4
103	Skeletal receptors for steroidâ€family regulating glycoprotein hormones. Annals of the New York Academy of Sciences, 2011, 1240, 26-31.	3.8	26
104	Calcium and bone disease. BioFactors, 2011, 37, 159-167.	5.4	58
105	Male Osteoporosis: Epidemiology and the Pathogenesis of Aging Bones. Current Osteoporosis Reports, 2011, 9, 229-236.	3.6	54
106	Anti-Cancer Actions of Denosumab. Current Osteoporosis Reports, 2011, 9, 173-176.	3.6	6
107	Bone, Inflammation, and Inflammatory Bowel Disease. Current Osteoporosis Reports, 2011, 9, 251-257.	3.6	57
108	Thyroid-stimulating hormone induces a Wnt-dependent, feed-forward loop for osteoblastogenesis in embryonic stem cell cultures. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16277-16282.	7.1	60

#	Article	IF	CITATIONS
109	Physiological loading of joints prevents cartilage degradation through CITED2. FASEB Journal, 2011, 25, 182-191.	0.5	74
110	BMP-12 Treatment of Adult Mesenchymal Stem Cells In Vitro Augments Tendon-Like Tissue Formation and Defect Repair In Vivo. PLoS ONE, 2011, 6, e17531.	2.5	154
111	The Pituitary-Bone Axis. Advances in Experimental Medicine and Biology, 2011, 707, 119-123.	1.6	0
112	The Role of FSH and TSH in Bone Loss and Its Clinical Relevance. Current Osteoporosis Reports, 2010, 8, 205-211.	3.6	23
113	Denosumab for the Treatment of Osteoporosis. Current Osteoporosis Reports, 2010, 8, 163-167.	3.6	20
114	HIV and Bone Loss. Current Osteoporosis Reports, 2010, 8, 219-226.	3.6	27
115	Adenosine A ₁ receptors regulate bone resorption in mice: Adenosine A ₁ receptor blockade or deletion increases bone density and prevents ovariectomyâ€induced bone loss in adenosine A ₁ receptor–knockout mice. Arthritis and Rheumatism, 2010, 62, 534-541.	6.7	79
116	Regulation of bone turnover by calciumâ€regulated calcium channels. Annals of the New York Academy of Sciences, 2010, 1192, 351-357.	3.8	23
117	ACTH is a novel regulator of bone mass. Annals of the New York Academy of Sciences, 2010, 1192, 110-116.	3.8	73
118	Nandrolone slows hindlimb bone loss in a rat model of bone loss due to denervation. Annals of the New York Academy of Sciences, 2010, 1192, 303-306.	3.8	30
119	Role of mitochondrial reactive oxygen species in osteoclast differentiation. Annals of the New York Academy of Sciences, 2010, 1192, 245-252.	3.8	101
120	Complexity in signal transduction. Annals of the New York Academy of Sciences, 2010, 1192, 238-244.	3.8	13
121	Cell signaling. Annals of the New York Academy of Sciences, 2010, 1211, 3-8.	3.8	2
122	The crossover of bisphosphonates to cancer therapy. Annals of the New York Academy of Sciences, 2010, 1211, 107-112.	3.8	16
123	Introduction to <i>Molecular and Integrative Physiology of the Musculoskeletal System</i> . Annals of the New York Academy of Sciences, 2010, 1211, 1-2.	3.8	1
124	Pharmacological and Biological Therapies for Metabolic Bone Disease in Critical Illness: An Integrative Physiology Approach. Current Drug Therapy, 2010, 5, 48-57.	0.3	2
125	Commentary-FSH and bone 2010: evolving evidence. European Journal of Endocrinology, 2010, 163, 173-176.	3.7	12
126	ACTH protects against glucocorticoid-induced osteonecrosis of bone. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8782-8787.	7.1	134

#	Article	IF	CITATIONS
127	Clinical, Cellular and Molecular Phenotypes of Aging Bone. Interdisciplinary Topics in Gerontology, 2010, 37, 175-192.	3.6	8
128	Glucocerebrosidase gene-deficient mouse recapitulates Gaucher disease displaying cellular and molecular dysregulation beyond the macrophage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19473-19478.	7.1	198
129	New Horizons in Skeletal Physiology and Pathophysiology. Endocrine Practice, 2010, 16, 874-881.	2.1	4
130	FSH-receptor isoforms and FSH-dependent gene transcription in human monocytes and osteoclasts. Biochemical and Biophysical Research Communications, 2010, 394, 12-17.	2.1	109
131	Further evidence for direct pro-resorptive actions of FSH. Biochemical and Biophysical Research Communications, 2010, 394, 6-11.	2.1	45
132	Prostaglandin E2 modulates components of the Wnt signaling system in bone and prostate cancer cells. Biochemical and Biophysical Research Communications, 2010, 394, 715-720.	2.1	26
133	Osteoclast Biology. , 2010, , 113-129.		2
134	Oxytocin is an anabolic bone hormone. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7149-7154.	7.1	223
135	Understanding Estrogen Action during Menopause. Endocrinology, 2009, 150, 3443-3445.	2.8	26
136	Thyroid-stimulating hormone, thyroid hormones, and bone loss. Current Osteoporosis Reports, 2009, 7, 47-52.	3.6	38
137	Bone loss or lost bone: Rationale and recommendations for the diagnosis and treatment of early postmenopausal bone loss. Current Osteoporosis Reports, 2009, 7, 118-126.	3.6	49
138	New insights: Elevated follicle-stimulating hormone and bone loss during the menopausal transition. Current Rheumatology Reports, 2009, 11, 191-195.	4.7	13
139	Coupling bone degradation to formation. Nature Medicine, 2009, 15, 729-731.	30.7	30
140	Paradigm Shift in the Pathophysiology of Postmenopausal and Thyrotoxic Osteoporosis. Mount Sinai Journal of Medicine, 2009, 76, 474-483.	1.9	4
141	Identification of CITED2 as a negative regulator of fracture healing. Biochemical and Biophysical Research Communications, 2009, 387, 641-645.	2.1	17
142	Oxytocin deficiency impairs maternal skeletal remodeling. Biochemical and Biophysical Research Communications, 2009, 388, 161-166.	2.1	41
143	The Thyroid-Stimulating Hormone Receptor: Impact of Thyroid-Stimulating Hormone and Thyroid-Stimulating Hormone Receptor Antibodies on Multimerization, Cleavage, and Signaling. Endocrinology and Metabolism Clinics of North America, 2009, 38, 319-341.	3.2	79
144	Role of the pituitary-bone axis in skeletal pathophysiology. Current Opinion in Endocrinology, Diabetes and Obesity, 2009, 16, 423-429.	2.3	18

#	Article	IF	CITATIONS
145	Evaluating the Antifracture Efficacy of Bisphosphonates. Reviews on Recent Clinical Trials, 2009, 4, 122-130.	0.8	21
146	Skeletal morphofunctional considerations and the pituitary-thyroid axis. Frontiers in Bioscience - Scholar, 2009, S1, 92-107.	2.1	6
147	TSH and Thyroid Hormones Both Regulate Bone Mass. Clinical Reviews in Bone and Mineral Metabolism, 2008, 6, 95-100.	0.8	1
148	The Developmental Basis of Skeletal Cell Differentiation and the Molecular Basis of Major Skeletal Defects. Biological Reviews, 2008, 83, 401-415.	10.4	28
149	Functional grouping of osteoclast genes revealed through microarray analysis. Biochemical and Biophysical Research Communications, 2008, 366, 352-359.	2.1	22
150	TNF-induced oscillations in combinatorial transcription factor binding. Biochemical and Biophysical Research Communications, 2008, 371, 912-916.	2.1	8
151	TNF-induced MAP kinase activation oscillates in time. Biochemical and Biophysical Research Communications, 2008, 371, 906-911.	2.1	9
152	TNF-induced gene expression oscillates in time. Biochemical and Biophysical Research Communications, 2008, 371, 900-905.	2.1	25
153	Descriptive analysis of concomitant prescription medication patterns from 1999 to 2004 among US women receiving daily or weekly oral bisphosphonate therapy. Gender Medicine, 2008, 5, 374-384.	1.4	3
154	Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4289-4294.	7.1	118
155	Osteoclast Biology. , 2008, , 151-167.		0
156	Solid Organ Transplantation, Chronic Renal Impairment, and Skeletal Complications. , 2008, , 223-228.		0
157	Efficacy and tolerability of intravenous ibandronate injections in postmenopausal osteoporosis: 2-year results from the DIVA study. Journal of Rheumatology, 2008, 35, 488-97.	2.0	99
158	Evidence that calcineurin is required for the genesis of bone-resorbing osteoclasts. American Journal of Physiology - Renal Physiology, 2007, 292, F285-F291.	2.7	51
159	CD38 is required for priming by TNF-α: a mechanism for extracellular coordination of cell fate. American Journal of Physiology - Renal Physiology, 2007, 292, F1283-F1290.	2.7	10
160	Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Human Molecular Genetics, 2007, 16, 1113-1123.	2.9	202
161	Induction of a program gene expression during osteoblast differentiation with strontium ranelate. Biochemical and Biophysical Research Communications, 2007, 355, 307-311.	2.1	94
162	Regulation of FSH receptor promoter activation in the osteoclast. Biochemical and Biophysical Research Communications, 2007, 361, 910-915.	2.1	7

#	Article	IF	CITATIONS
163	Skeletal remodeling in health and disease. Nature Medicine, 2007, 13, 791-801.	30.7	893
164	Cellular and Molecular Consequences of Calcineurin AÂ Gene Deletion. Annals of the New York Academy of Sciences, 2007, 1116, 216-226.	3.8	10
165	Progression of Efficacy with Ibandronate: A Paradigm for the Development of New Bisphosphonates. Annals of the New York Academy of Sciences, 2007, 1117, 273-282.	3.8	9
166	Proresorptive Actions of FSH and Bone Loss. Annals of the New York Academy of Sciences, 2007, 1116, 376-382.	3.8	33
167	Bone Loss in Thyroid Disease: Role of Low TSH and High Thyroid Hormone. Annals of the New York Academy of Sciences, 2007, 1116, 383-391.	3.8	33
168	Similarities and Contrasts in Ryanodine Receptor Localization and Function in Osteoclasts and Striated Muscle Cells. Annals of the New York Academy of Sciences, 2007, 1116, 255-270.	3.8	7
169	Osteoclastic differentiation and function regulated by old and new pathways. Reviews in Endocrine and Metabolic Disorders, 2007, 7, 23-32.	5.7	59
170	Low TSH Triggers Bone Loss: Fact or Fiction?. Thyroid, 2006, 16, 1075-1076.	4.5	26
171	FSH Directly Regulates Bone Mass. Cell, 2006, 125, 247-260.	28.9	612
172	Response: Both FSH and Sex Steroids Influence Bone Mass. Cell, 2006, 127, 1080-1081.	28.9	21
173	Structure and functional regulation of the CD38 promoter. Biochemical and Biophysical Research Communications, 2006, 341, 804-809.	2.1	24
174	TNF regulates cellular NAD+ metabolism in primary macrophages. Biochemical and Biophysical Research Communications, 2006, 342, 1312-1318.	2.1	58
175	Extracellular NAD+ metabolism modulates osteoclastogenesis. Biochemical and Biophysical Research Communications, 2006, 349, 533-539.	2.1	17
176	Selective upregulation of the ADP-ribosyl cyclases CD38 and CD157 by TNF but not by RANK-L reveals differences in downstream signaling. American Journal of Physiology - Renal Physiology, 2006, 291, F557-F566.	2.7	23
177	TSH and Bone Loss. Annals of the New York Academy of Sciences, 2006, 1068, 309-318.	3.8	57
178	Restoration of Bone Mass in Hpg Mouse by Preoptic Area Grafting. Annals of the New York Academy of Sciences, 2006, 1068, 341-347.	3.8	7
179	Modeling of Serum C-Telopeptide Levels with Daily and Monthly Oral Ibandronate in Humans. Annals of the New York Academy of Sciences, 2006, 1068, 560-563.	3.8	8
180	Editorial: Skeletal Biology and Skeletal Medicine. Annals of the New York Academy of Sciences, 2006, 1068, xvii-xvii.	3.8	0

#	Article	IF	CITATIONS
181	Follicle-stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14925-14930.	7.1	191
182	TNFÂ mediates the skeletal effects of thyroid-stimulating hormone. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12849-12854.	7.1	114
183	Calcineurin regulates bone formation by the osteoblast. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17130-17135.	7.1	144
184	NO-dependent osteoclast motility: reliance on cGMP-dependent protein kinase I and VASP. Journal of Cell Science, 2005, 118, 5479-5487.	2.0	50
185	Osteoclast signalling pathways. Biochemical and Biophysical Research Communications, 2005, 328, 728-738.	2.1	145
186	Molecular regulation of mechanotransduction. Biochemical and Biophysical Research Communications, 2005, 328, 751-755.	2.1	198
187	Bisphosphonates induce inflammation and rupture of atherosclerotic plaques in apolipoprotein-E null mice. Biochemical and Biophysical Research Communications, 2005, 328, 790-793.	2.1	32
188	Molecules, mechanisms, and momentum in bone and cartilage research. Biochemical and Biophysical Research Communications, 2005, 328, 647-650.	2.1	1
189	Neural surveillance of skeletal homeostasis. Cell Metabolism, 2005, 1, 219-221.	16.2	21
190	Molecular Effects of Calcineurin Inhibitors. , 2005, , 79-89.		1
191	Transplantation Bone Disease Induced by Non-Steroid Immunosuppressants. , 2005, , 61-77.		0
191 192	Transplantation Bone Disease Induced by Non-Steroid Immunosuppressants. , 2005, , 61-77. Calcitonin: Physiological Actions and Clinical Applications. Journal of Pediatric Endocrinology and Metabolism, 2004, 17, 931-40.	0.9	0 29
191 192 193	Transplantation Bone Disease Induced by Non-Steroid Immunosuppressants. , 2005, , 61-77. Calcitonin: Physiological Actions and Clinical Applications. Journal of Pediatric Endocrinology and Metabolism, 2004, 17, 931-40. Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption. Biological Reviews, 2004, 79, 79-100.	0.9	0 29 44
191 192 193 194	Transplantation Bone Disease Induced by Non-Steroid Immunosuppressants. , 2005, , 61-77. Calcitonin: Physiological Actions and Clinical Applications. Journal of Pediatric Endocrinology and Metabolism, 2004, 17, 931-40. Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption. Biological Reviews, 2004, 79, 79-100. Disorders Associated With Acute Rapid and Severe Bone Loss. Journal of Bone and Mineral Research, 2003, 18, 2083-2094.	0.9 10.4 2.8	0 29 44 94
191 192 193 194	Transplantation Bone Disease Induced by Non-Steroid Immunosuppressants. , 2005, , 61-77. Calcitonin: Physiological Actions and Clinical Applications. Journal of Pediatric Endocrinology and Metabolism, 2004, 17, 931-40. Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption. Biological Reviews, 2004, 79, 79-100. Disorders Associated With Acute Rapid and Severe Bone Loss. Journal of Bone and Mineral Research, 2003, 18, 2083-2094. Osteoclastogenesis, Bone Resorption, and Osteoclast-Based Therapeutics. Journal of Bone and Mineral Research, 2003, 18, 599-609.	0.9 10.4 2.8 2.8	0 29 44 94 151
 191 192 193 194 195 196 	Transplantation Bone Disease Induced by Non-Steroid Immunosuppressants. , 2005, , 61-77.Calcitonin: Physiological Actions and Clinical Applications. Journal of Pediatric Endocrinology and Metabolism, 2004, 17, 931-40.Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption. Biological Reviews, 2004, 79, 79-100.Disorders Associated With Acute Rapid and Severe Bone Loss. Journal of Bone and Mineral Research, 2003, 18, 2083-2094.Osteoclastogenesis, Bone Resorption, and Osteoclast-Based Therapeutics. Journal of Bone and Mineral Research, 2003, 18, 599-609.TSH Is a Negative Regulator of Skeletal Remodeling. Cell, 2003, 115, 151-162.	0.9 10.4 2.8 2.8 2.8	0 29 44 94 151 585
 191 192 193 194 195 196 197 	Transplantation Bone Disease Induced by Non-Steroid Immunosuppressants. , 2005, , 61-77.Calcitonin: Physiological Actions and Clinical Applications. Journal of Pediatric Endocrinology and Metabolism, 2004, 17, 931-40.Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption. Biological Reviews, 2004, 79, 79-100.Disorders Associated With Acute Rapid and Severe Bone Loss. Journal of Bone and Mineral Research, 2003, 18, 2083-2094.Osteoclastogenesis, Bone Resorption, and Osteoclast-Based Therapeutics. Journal of Bone and Mineral Research, 2003, 18, 599-609.TSH Is a Negative Regulator of Skeletal Remodeling. Cell, 2003, 115, 151-162.Mitochondria to nucleus stress signaling. Journal of Cell Biology, 2003, 161, 507-519.	0.9 10.4 2.8 2.8 28.9 5.2	0 29 44 94 151 585

#	Article	IF	CITATIONS
199	Understanding osteoclast formation and function: implications for future therapies for osteoporosis. Current Opinion in Orthopaedics, 2003, 14, 341-350.	0.3	10
200	Molecular cloning, expression, and function of osteoclastic calcineurin Aα. American Journal of Physiology - Renal Physiology, 2003, 284, F575-F583.	2.7	15
201	Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice. Journal of Clinical Investigation, 2003, 112, 924-934.	8.2	192
202	Cinacalcet hydrochloride (Amgen). IDrugs: the Investigational Drugs Journal, 2003, 6, 587-92.	0.7	4
203	Calcitonin: The Other Thyroid Hormone. Thyroid, 2002, 12, 791-798.	4.5	35
204	Mechanisms balancing skeletal matrix synthesis and degradation. Biochemical Journal, 2002, 364, 329-341.	3.7	141
205	A novel mechanism for coupling cellular intermediary metabolism to cytosolic Ca2+signaling via CD38/ADPâ€ribosyl cyclase, a putative intracellular NAD+sensor. FASEB Journal, 2002, 16, 302-314.	0.5	65
206	Forty years of calcitonin—where are we now? A tribute to the work of Iain Macintyre, FRS. Bone, 2002, 30, 655-663.	2.9	132
207	Ca ²⁺ influx through the osteoclastic plasma membrane ryanodine receptor. American Journal of Physiology - Renal Physiology, 2002, 282, F921-F932.	2.7	41
208	Molecular and Clinical Pharmacology of Calcitonin. , 2002, , 1423-1440.		7
209	Calcitonin and bone formation: a knockout full of surprises. Journal of Clinical Investigation, 2002, 110, 1769-1771.	8.2	25
210	Calcitonin and bone formation: a knockout full of surprises. Journal of Clinical Investigation, 2002, 110, 1769-1771.	8.2	64
211	Osteoporosis: trends and intervention. Mount Sinai Journal of Medicine, 2002, 69, 220-31.	1.9	10
212	Identification and Characterization of a Sodium/Calcium Exchanger, NCX-1, in Osteoclasts and Its Role in Bone Resorption. Biochemical and Biophysical Research Communications, 2001, 283, 770-775.	2.1	26
213	New Insights into the Regulation of Cathepsin K Gene Expression by Osteoprotegerin Ligand. Biochemical and Biophysical Research Communications, 2001, 285, 335-339.	2.1	46
214	Macrophage Colony-Stimulating Factor Suppresses Osteoblast Formation. Biochemical and Biophysical Research Communications, 2001, 285, 328-334.	2.1	16
215	Cathepsin K, Osteoclastic Resorption, and Osteoporosis Therapy. Journal of Bone and Mineral Research, 2001, 16, 1747-1749.	2.8	65

#	Article	IF	CITATIONS
217	Molecular Cloning, Expression, and Functional Characterization of a Novel Member of the CD38 Family of ADP-ribosyl Cyclases. Biochemical and Biophysical Research Communications, 2000, 273, 884-889.	2.1	7
218	Cd38/Adp-Ribosyl Cyclase. Journal of Cell Biology, 1999, 146, 1161-1172.	5.2	76
219	A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nature Cell Biology, 1999, 1, 409-414.	10.3	159
220	Emerging Insights into the Role of Calcium Ions in Osteoclast Regulation. Journal of Bone and Mineral Research, 1999, 14, 669-674.	2.8	92
221	Molecular and Functional Evidence for Calcineurin-A α and β Isoforms in the Osteoclast: Novel Insights into Cyclosporin A Action on Bone Resorption. Biochemical and Biophysical Research Communications, 1999, 254, 248-252.	2.1	50
222	Direct Microsensor Measurement of Nitric Oxide Production by the Osteoclast. Biochemical and Biophysical Research Communications, 1999, 259, 73-77.	2.1	17
223	Direct Microsensor Measurement of Nitric Oxide Production by the Osteoclast. Biochemical and Biophysical Research Communications, 1999, 265, 770.	2.1	2
224	Novel Mechanisms of Calcium Handling by the Osteoclast: A Review-Hypothesis. Proceedings of the Association of American Physicians, 1999, 111, 319-327.	2.0	28
225	The effect of extracellularly applied divalent cations on cytosolic Ca2+in murine Leydig cells: evidence for a Ca2+-sensing receptor. Journal of Physiology, 1998, 513, 399-410.	2.9	28
226	Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts. , 1998, 176, 537-544.		35
227	Upregulation of Functional Ryanodine Receptors duringin VitroAging of Human Diploid Fibroblasts. Biochemical and Biophysical Research Communications, 1998, 245, 50-52.	2.1	7
228	A Possible New Role for Vitamin D-Binding Protein in Osteoclast Control: Inhibition of Extracellular Ca2+Sensing at Low Physiological Concentrations. Biochemical and Biophysical Research Communications, 1998, 249, 668-671.	2.1	24
229	Mode of Action of Interleukin-6 on Mature Osteoclasts. Novel Interactions with Extracellular Ca2+ Sensing in the Regulation of Osteoclastic Bone Resorption. Journal of Cell Biology, 1998, 142, 1347-1356.	5.2	85
230	Extracellular Calcium Ion Sensing in Osteoclasts. Advances in Organ Biology, 1998, , 371-383.	0.1	0
231	Molecular Pharmacology of Antiresorptive Therapy for Osteoporosis. Advances in Organ Biology, 1998, , 809-834.	0.1	0
232	Genetics and Cell Biology of Calcitonin Action. Principles of Medical Biology, 1997, , 601-616.	0.1	1
233	Effect of membrane potential on surface Ca2+ receptor activation in rat osteoclasts. Journal of Cellular Physiology, 1995, 162, 1-8.	4.1	20
234	Extracellular Cation Sensing by the Enterocyte: Prediction of a Novel Divalent Cation "Receptor". Biochemical and Biophysical Research Communications, 1995, 210, 948-953.	2.1	15

#	Article	IF	CITATIONS
235	Elevated cytosolic calcium levels in human lymphocytes during surface virus infections. Molecular and Cellular Biochemistry, 1994, 131, 61-66.	3.1	1
236	Modulation of the Osteoclast Ca2+ Receptor by Extracellular Protons: Possible Linkage Between Ca2+ Sensing and Extracellular Acidification. Biochemical and Biophysical Research Communications, 1994, 199, 742-747.	2.1	18
237	Ca2+ channels in human term trophoblast cells in vitro. A study using the Ca2+-sensitive dye fura 2. Placenta, 1994, 15, 573-580.	1.5	1
238	Free radical pathways in the inflammatory response. New Comprehensive Biochemistry, 1994, , 361-383.	0.1	11
239	Activation of the Ca2+ ?receptor? on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: Evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation. Journal of Cellular Physiology, 1993, 155, 120-129.	4.1	50
240	Tetracyclines modulate cytosolic Ca2+ responses in the osteoclast associated with "Ca2+ receptor― activation. Bioscience Reports, 1993, 13, 169-174.	2.4	19
241	CELLULAR BIOLOGY OF BONE RESORPTION. Biological Reviews, 1993, 68, 197-264.	10.4	57
242	Stimulation of a Gs-like G Protein in the Osteoclast Inhibits Bone Resorption but Enhances Tartrate-Resistant Acid Phosphatase Secretion. Biochemical and Biophysical Research Communications, 1993, 190, 496-501.	2.1	17
243	Voltage Sensitivity of the Osteoclast Calcium Receptor. Biochemical and Biophysical Research Communications, 1993, 192, 1100-1105.	2.1	14
244	The effect of tetracyclines on quantitative measures of osteoclast morphology. Bioscience Reports, 1993, 13, 175-182.	2.4	15
245	Amylin in bone conservation current evidence and hypothetical Considerations. Trends in Endocrinology and Metabolism, 1993, 4, 255-259.	7.1	25
246	Cyclosporine And Cremaphor Modulate Von Willebrand Factor Release From Cultured Human Endothelial Cells. Transplantation, 1993, 56, 1218-1222.	1.0	27
247	Linkage of extracellular and intracellular control of cytosolic Ca2+ in rat osteoclasts in the presence of thapsigargin. Journal of Bone and Mineral Research, 1993, 8, 961-967.	2.8	31
248	Overview: Inhibitors of Bone Resorption and Implications for Therapy. Current Opinion in Therapeutic Patents, 1992, 2, 1517-1538.	0.0	2
249	Stimulation of osteoclastic bone resorption by hydrogen peroxide. Biochemical and Biophysical Research Communications, 1992, 183, 1153-1158.	2.1	190
250	Observations on Ca2+ entry into cultured human term trophoblasts via a putative Ca2+-operated Ca2+ channel. Placenta, 1992, 13, A4.	1.5	1
251	Is the osteoclast calcium "receptor―a receptor-operated calcium channel?. Biochemical and Biophysical Research Communications, 1992, 183, 619-625.	2.1	36
252	Activation and inactivation of the osteoclast Ca2+ receptor by the trivalent cation, La3+. Biochemical and Biophysical Research Communications, 1992, 187, 907-912.	2.1	26

#	Article	IF	CITATIONS
253	The osteoclast Ca2+ receptor is highly sensitive to activation by transition metal cations. Biochemical and Biophysical Research Communications, 1992, 187, 913-918.	2.1	41
254	Evidence that a ryanodine receptor triggers signal transduction in the osteoclast. Biochemical and Biophysical Research Communications, 1992, 188, 1332-1336.	2.1	31
255	A quantitative description of components of in vitro morphometric change in the rat osteoclast model: relationships with cellular function. European Biophysics Journal, 1992, 21, 349-55.	2.2	34
256	A hypothesis for the local control of osteoclast function by Ca2+, nitric oxide and free radicals. Bioscience Reports, 1992, 12, 369-380.	2.4	13
257	Selective antagonism of calcitonin-induced osteoclastic quiescence (Q effect) by human calcitonin gene-related peptide-(Val8Phe37). Biochemical and Biophysical Research Communications, 1991, 179, 134-139.	2.1	47
258	Single pulses of cytoplasmic calcium associated with phagocytosis of individual zymosan particles by macrophages. Biochemical and Biophysical Research Communications, 1991, 177, 460-465.	2.1	8
259	Expression and Function of the Calcitonin Gene Products. Vitamins and Hormones, 1991, 46, 87-164.	1.7	23
260	Divalent cations mimic the inhibitory effect of extracellular ionised calcium on bone resorption by isolated rat osteoclasts: Further evidence for a ?calcium receptor?. Journal of Cellular Physiology, 1991, 149, 422-427.	4.1	95
261	"Calcium receptors―on eukaryotic cells with special reference to the osteoclast. Bioscience Reports, 1990, 10, 493-507.	2.4	51
262	Modularity of osteoclast behaviour and "mode-specific―inhibition of osteoclast function. Bioscience Reports, 1990, 10, 547-556.	2.4	54
263	The Calcitonin Gene Peptides: Biology and Clinical Relevance. Critical Reviews in Clinical Laboratory Sciences, 1990, 28, 109-174.	6.1	86
264	A new approach for calcitonin determination based on target cell responsiveness. Journal of Endocrinological Investigation, 1990, 13, 119-126.	3.3	19
265	Intracellular calcium in the control of osteoclast function I. Voltage-insensitivity and lack of effects of nifedipine, BAYK8644 and diltiazem. Biochemical and Biophysical Research Communications, 1990, 167, 183-188.	2.1	29
266	A dual effect of calcitonin gene-related peptide on plasma calcium levels in the chick. Biochemical and Biophysical Research Communications, 1990, 169, 846-850.	2.1	21
267	Intracellular calcium in the control of osteoclast function. II. Paradoxical elevation of cytosolic free calcium by verapamil. Biochemical and Biophysical Research Communications, 1990, 167, 807-812.	2.1	36
268	The effect of extracellular calcium elevation on morphology and function of isolated rat osteoclasts. Bioscience Reports, 1989, 9, 747-751.	2.4	77
269	†Calcium-activated' intracellular calcium elevation: A novel mechanism of osteoclast regulation. Biochemical and Biophysical Research Communications, 1989, 163, 1461-1465.	2.1	217
270	In vivo and in vitro effects of amylin and amylin-amide on calcium metabolism in the rat and rabbit. Biochemical and Biophysical Research Communications, 1989, 162, 876-881.	2.1	121

#	Article	IF	CITATIONS
271	Inhibition of osteoclastic acid phosphatase abolishes bone resorption. Biochemical and Biophysical Research Communications, 1989, 159, 68-71.	2.1	92
272	Transforming growth factor-β-induced mitogenesis of human bone cancer cells. Biochemical and Biophysical Research Communications, 1989, 161, 672-676.	2.1	18
273	Production and characterisation of immunoreactive calcitonin gene-related peptide (CGRP) from a CGRP receptor-positive cloned osteosarcoma cell line (UMR 106.01). Biochemical and Biophysical Research Communications, 1989, 158, 214-219.	2.1	14
274	A highly specific and sensitive enzyme-immunometric assay for calcitonin gene-related peptide based on enzyme amplification. Journal of Immunological Methods, 1988, 111, 11-16.	1.4	14
275	EFFECTS OF PEPTIDES FROM THE CALCITONIN GENES ON BONE AND BONE CELLS. Quarterly Journal of Experimental Physiology (Cambridge, England), 1988, 73, 471-485.	1.0	98
276	Transient appearance of calcitonin gene-related peptide-like immunoreactive fibers in the developing cerebellum of the rat. Brain Research, 1987, 415, 385-388.	2.2	33
277	Calcitonin gene-related peptide inhibits osteoclastic bone resorption: A comparative study. Calcified Tissue International, 1987, 40, 149-154.	3.1	162
278	MAF1, a repressor of RNA polymerase III-dependent transcription, regulates bone mass. ELife, 0, 11, .	6.0	7