Carla Mattos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4364656/publications.pdf

Version: 2024-02-01

83 papers 4,140 citations

201385 27 h-index 51 g-index

87 all docs

87 docs citations

87 times ranked

5577 citing authors

#	Article	IF	CITATIONS
1	Regulation of GTPase function by autophosphorylation. Molecular Cell, 2022, 82, 950-968.e14.	4.5	9
2	Computational studies of the principle of dynamic-change-driven protein interactions. Structure, 2022, , .	1.6	8
3	Mechanisms of isoform-specific residue influence on GTP-bound HRas, KRas, and NRas. Biophysical Journal, 2022, 121, 3616-3629.	0.2	5
4	Raf promotes dimerization of the Ras G-domain with increased allosteric connections. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3. 3	39
5	Molecular dynamics simulations of the Rap $1A$ reveal unique features in the active site. FASEB Journal, 2021, 35, .	0.2	O
6	Regulation of RAS function by active site autophosphorylation. FASEB Journal, 2021, 35, .	0.2	0
7	Raf promotes dimerization of the Ras Gâ€domain with increased allosteric connections. FASEB Journal, 2021, 35, .	0.2	O
8	Dataâ€driven model of the KRas4B/Calmodulin complex. FASEB Journal, 2021, 35, .	0.2	0
9	Crystal Structure Reveals the Full Ras–Raf Interface and Advances Mechanistic Understanding of Raf Activation. Biomolecules, 2021, 11, 996.	1.8	35
10	DRoP: Automated detection of conserved solventâ€binding sites on proteins. Proteins: Structure, Function and Bioinformatics, 2020, 88, 152-165.	1.5	7
11	Water in Ras Superfamily Evolution. Journal of Computational Chemistry, 2020, 41, 402-414.	1.5	3
12	Development of a structure-analysis pipeline using multiple-solvent crystal structures of barrier-to-autointegration factor. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1001-1014.	1.1	1
13	Isoform-Specific Destabilization of the Active Site Reveals a Molecular Mechanism of Intrinsic Activation of KRas G13D. Cell Reports, 2019, 28, 1538-1550.e7.	2.9	63
14	The Structural Basis of the Farnesylated and Methylated KRas4B Interaction with Calmodulin. Structure, 2019, 27, 1647-1659.e4.	1.6	30
15	Titration of ionizable groups in proteins using multiple neutron data sets from a single crystal: application to the small GTPase Ras. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 111-115.	0.4	3
16	Targeting Cancer from a Structural Biology Perspective. , 2019, , 295-320.		0
17	The K-Ras, N-Ras, and H-Ras Isoforms: Unique Conformational Preferences and Implications for Targeting Oncogenic Mutants. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031427.	2.9	36
18	Neutron scattering in the biological sciences: progress and prospects. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1129-1168.	1.1	47

#	Article	IF	CITATIONS
19	Predicting Xâ€ray solution scattering from flexible macromolecules. Protein Science, 2018, 27, 2023-2036.	3.1	3
20	K-Ras Populates Conformational States Differently from Its Isoform H-Ras and Oncogenic Mutant K-RasG12D. Structure, 2018, 26, 810-820.e4.	1.6	66
21	The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. Journal of Biological Chemistry, 2017, 292, 12981-12993.	1.6	105
22	An engineered protein antagonist of K-Ras/B-Raf interaction. Scientific Reports, 2017, 7, 5831.	1.6	55
23	Balance of Conformational States Affect the Intrinsic Hydrolysis of NRas When Compared to Other Ras Isoforms. FASEB Journal, 2017, 31, 764.14.	0.2	0
24	Ras Residue Y71 Promotes Flexibility of Switch I and Switch II. FASEB Journal, 2017, 31, 913.15.	0.2	1
25	Expression, purification, crystallization and X-ray data collection for RAS and its mutants. Data in Brief, 2016, 6, 423-427.	0.5	15
26	Crystal structures of acetylated HRas K104 mimic K104Q and mutant K104A suggest unique role of K104 in interlobe communication across HRas. FASEB Journal, 2016, 30, 1116.2.	0.2	1
27	The Effect of Y71 Mutants on The Allosteric Switch of Ras. FASEB Journal, 2016, 30, 1116.5.	0.2	0
28	Allosteric role of R97 on the NRas active site. FASEB Journal, 2016, 30, 1116.6.	0.2	0
29	Crystallographic Study of Wildâ€type and Mg 2+ â€free Kâ€Ras GTPase. FASEB Journal, 2016, 30, 1116.3.	0.2	0
30	Characterizing Conformational Ensemble of Hâ€; Kâ€; and Nâ€Ras Using Accelerated Molecular Dynamics and Wideâ€Angle Xâ€ray Solution Scattering (WAXS). FASEB Journal, 2016, 30, 1116.4.	0.2	0
31	Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. FASEB Journal, 2015, 29, 3750-3761.	0.2	40
32	The Rasâ€"Membrane Interface: Isoform-Specific Differences in the Catalytic Domain. Molecular Cancer Research, 2015, 13, 595-603.	1.5	49
33	Neutron Crystal Structure of RAS GTPase Puts in Question the Protonation State of the GTP Î ³ -Phosphate. Journal of Biological Chemistry, 2015, 290, 31025-31036.	1.6	44
34	Direct Attack on RAS: Intramolecular Communication and Mutation-Specific Effects. Clinical Cancer Research, 2015, 21, 1810-1818.	3.2	73
35	Allosteric Effects of the Oncogenic RasQ61L Mutant on Raf-RBD. Structure, 2015, 23, 505-516.	1.6	201
36	Ras: structural details to guide direct targeting. Aging, 2015, 7, 344-345.	1.4	4

3

#	Article	IF	CITATIONS
37	A Superfamily Reunion: Conserved Water Analysis of Small GTPases Using the Crystallography Tool DRoP. FASEB Journal, 2015, 29, 893.13.	0.2	O
38	Probing the Structure and Function of the Helixâ€5 Waterâ€Mediated Network in Hâ€Ras. FASEB Journal, 2015, 29, 893.12.	0.2	0
39	Multiple Solvent Crystal Structures of phage P22 tailspike protein: An analysis of binding site hot spots and surface hydration. FASEB Journal, 2015, 29, .	0.2	0
40	Expression, Purification, and Crystallization of the Kâ€Ras Q61L and D92Y mutations. FASEB Journal, 2015, 29, 893.10.	0.2	0
41	Ras Isoforms Conformational Clustering and Community Networks Studies: Simulating Ras with Accelerated Molecular Dynamics. FASEB Journal, 2015, 29, LB203.	0.2	0
42	Probing the Rasâ€membrane Interaction from a Structural Biology Perspective. FASEB Journal, 2015, 29, 893.23.	0.2	0
43	Crystallization and Structural Determination of NRas. FASEB Journal, 2015, 29, LB202.	0.2	0
44	Neutron Crystal Structure of Ras GTPase sets New Paradigm for GTP Hydrolysis. FASEB Journal, 2015, 29, 893.7.	0.2	0
45	DRoP: A Water Analysis Program Identifies Ras-GTP-Specific Pathway of Communication between Membrane-Interacting Regions and the Active Site. Journal of Molecular Biology, 2014, 426, 611-629.	2.0	38
46	The Allosteric Switch and Conformational States in Ras GTPase Affected by Small Molecules. The Enzymes, 2013, 33 Pt A, 41-67.	0.7	31
47	Introduction: Promoting concept driven teaching strategies in biochemistry and molecular biology. Biochemistry and Molecular Biology Education, 2013, 41, 287-288.	0.5	11
48	Multiple Solvent Crystal Structures of Rap1a GTPase. FASEB Journal, 2013, 27, .	0.2	0
49	Study of the effect of Ca(OAc)2 concentration on the state of the Allosteric Switch in Ras GTPase. FASEB Journal, 2013, 27, 831.17.	0.2	0
50	Study of Ras catalytic mechanism of intrinsic hydrolysis of GTP. FASEB Journal, 2013, 27, 831.10.	0.2	1
51	Allosteric modulation of caspase 3 through mutagenesis. Bioscience Reports, 2012, 32, 401-411.	1.1	24
52	Shift in the Equilibrium between On and Off States of the Allosteric Switch in Ras-GppNHp Affected by Small Molecules and Bulk Solvent Composition. Biochemistry, 2012, 51, 6114-6126.	1.2	33
53	Structurally Conserved Nop56/58 N-terminal Domain Facilitates Archaeal Box C/D Ribonucleoprotein-guided Methyltransferase Activity. Journal of Biological Chemistry, 2012, 287, 19418-19428.	1.6	11
54	A Comprehensive Survey of Ras Mutations in Cancer. Cancer Research, 2012, 72, 2457-2467.	0.4	1,602

#	Article	IF	Citations
55	Thermodynamic, enzymatic and structural effects of removing a salt bridge at the base of loop 4 in (pro)caspase-3. Archives of Biochemistry and Biophysics, 2011, 508, 31-38.	1.4	13
56	Analysis of Binding Site Hot Spots on the Surface of Ras GTPase. Journal of Molecular Biology, 2011, 413, 773-789.	2.0	139
57	Allosteric Modulation of Ras-GTP Is Linked to Signal Transduction through RAF Kinase. Journal of Biological Chemistry, 2011, 286, 3323-3331.	1.6	74
58	Collaboration within the Laboratory Group. FASEB Journal, 2011, 25, 207.1.	0.2	0
59	Commentary: Biochemistry and molecular biology educators launch national network. Biochemistry and Molecular Biology Education, 2010, 38, 266-267.	0.5	1
60	Allosteric modulation of Ras positions Q61 for a direct role in catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4931-4936.	3.3	211
61	Allosteric modulation of Ras: a novel role for Glutamine 61 in catalysis. FASEB Journal, 2010, 24, 867.4.	0.2	0
62	Multiple solvent crystal structures of ribonuclease A: An assessment of the method. Proteins: Structure, Function and Bioinformatics, 2009, 76, 861-881.	1.5	36
63	Mechanism of intrinsic hydrolysis in Ras and the effect of Raf on oncogenic Ras mutants. FASEB Journal, 2009, 23, 204.3.	0.2	0
64	Minimizing frustration by folding in an aqueous environment. Archives of Biochemistry and Biophysics, 2008, 469, 118-131.	1.4	18
65	Rapid Folding and Unfolding of Apaf-1 CARD. Journal of Molecular Biology, 2007, 369, 290-304.	2.0	11
66	Transformation Efficiency of RasQ61 Mutants Linked to Structural Features of the Switch Regions in the Presence of Raf. Structure, 2007, 15, 1618-1629.	1.6	97
67	Multiple solvent crystal structures of RNAse A. FASEB Journal, 2007, 21, A1010.	0.2	0
68	The structures of Q61 Ras mutants solved in a new space group reveals insights into the mechanism of intrinsic GTPase actitvity. FASEB Journal, 2007, 21, A640.	0.2	0
69	Barrierâ€toâ€autointegration Factor (BAF): purification, crystallization and multiple solvent crystal structure. FASEB Journal, 2007, 21, A638.	0.2	0
70	Multiple Solvent Crystal Structures of Chymotrypsin: Comparision with Elastase. FASEB Journal, 2007, 21, A639.	0.2	0
71	Removing the barrier between teaching in the classroom and research in the laboratory. FASEB Journal, 2007, 21, A39.	0.2	0
72	The crystal structures of Rap1a bound to GTP and GppNHp. FASEB Journal, 2007, 21, A640.	0.2	0

#	Article	IF	CITATIONS
73	Multiple Solvent Crystal Structures: Probing Binding Sites, Plasticity and Hydration. Journal of Molecular Biology, 2006, 357, 1471-1482.	2.0	138
74	Comparison between experimental Multiple Solvent Crystal Structures and Computational Solvent Mapping of Hen Eggwhite Lysozyme. FASEB Journal, 2006, 20, A476.	0.2	0
75	Crystal Structures of Ral-GppNHp and Ral-GDP Reveal Two Binding Sites that Are Also Present in Ras and Rap. Structure, 2004, 12, 2025-2036.	1.6	35
76	X-ray structural and simulation analysis of a protein mutant: The value of a combined approach. Proteins: Structure, Function and Bioinformatics, 2004, 55, 733-742.	1.5	2
77	Organic Solvents Order the Dynamic Switch II in Ras Crystals. Structure, 2003, 11, 747-751.	1.6	39
78	Protein–water interactions in a dynamic world. Trends in Biochemical Sciences, 2002, 27, 203-208.	3.7	187
79	Analysis of the binding surfaces of proteins. , 1999, 19, 321-331.		35
80	Locating and characterizing binding sites on proteins. Nature Biotechnology, 1996, 14, 595-599.	9.4	247
81	Analogous inhibitors of elastase do not always bind analogously. Nature Structural and Molecular Biology, 1994, 1, 55-58.	3.6	88
82	Analysis of Two-residue Turns in Proteins. Journal of Molecular Biology, 1994, 238, 733-747.	2.0	67
83	Isoform-Specific Destabilization of the Active Site Reveals Molecular Mechanism of Intrinsic Activation of KRas G13D. SSRN Electronic Journal, 0, , .	0.4	0