Dong-Won Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4364637/publications.pdf

Version: 2024-02-01

1937685 2053705 6 50 4 5 citations h-index g-index papers 6 55 6 6 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanoscale CuO solid-electrolyte-based conductive-bridging-random-access-memory cell operating multi-level-cell and 1selector1resistor. Journal of Materials Chemistry C, 2015, 3, 9540-9550.	5.5	21
2	Double MgO-Based Perpendicular Magnetic Tunnel Junction for Artificial Neuron. Frontiers in Neuroscience, 2020, 14, 309.	2.8	15
3	An electroforming-free mechanism for Cu ₂ O solid-electrolyte-based conductive-bridge random access memory (CBRAM). Journal of Materials Chemistry C, 2020, 8, 8125-8134.	5 . 5	5
4	Realâ€Time Correlation Detection via Online Learning of a Spiking Neural Network with a Conductiveâ€Bridge Neuron. Advanced Electronic Materials, 2022, 8, .	5.1	5
5	Nanoscale CuO solid-electrolyte-based conductive-bridging, random-access memory cell with a TiN liner. Journal of the Korean Physical Society, 2018, 72, 116-121.	0.7	4
6	Perpendicular-spin-transfer-torque magnetic-tunnel-junction neuron for spiking neural networks depending on the nanoscale grain size of the MgO tunnelling barrier. Materials Advances, 2022, 3, 1587-1593.	5.4	0