
Robert Bailis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4364339/publications.pdf Version: 2024-02-01

POREDT RAILIS

#	Article	IF	CITATIONS
1	The carbon footprint of traditional woodfuels. Nature Climate Change, 2015, 5, 266-272.	8.1	323
2	Mortality and Greenhouse Gas Impacts of Biomass and Petroleum Energy Futures in Africa. Science, 2005, 308, 98-103.	6.0	263
3	Low demand for nontraditional cookstove technologies. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10815-10820.	3.3	240
4	Monitoring and evaluation of improved biomass cookstove programs for indoor air quality and stove performance: conclusions from the Household Energy and Health Project. Energy for Sustainable Development, 2007, 11, 5-18.	2.0	130
5	Performance testing for monitoring improved biomass stove interventions: experiences of the Household Energy and Health Project. Energy for Sustainable Development, 2007, 11, 57-70.	2.0	124
6	Greenhouse Gas Emissions and Land Use Change from <i>Jatropha Curcas</i> -Based Jet Fuel in Brazil. Environmental Science & Technology, 2010, 44, 8684-8691.	4.6	124
7	Arresting the Killer in the Kitchen: The Promises and Pitfalls of Commercializing Improved Cookstoves. World Development, 2009, 37, 1694-1705.	2.6	120
8	Everybody stacks: Lessons from household energy case studies to inform design principles for clean energy transitions. Energy Policy, 2020, 141, 111468.	4.2	109
9	Africa Biogas Partnership Program: A review of clean cooking implementation through market development in East Africa. Energy for Sustainable Development, 2018, 46, 23-31.	2.0	88
10	Using sales data to assess cooking gas adoption and the impact of India's Ujjwala programme in rural Karnataka. Nature Energy, 2019, 4, 806-814.	19.8	87
11	Environmental Burden of Traditional Bioenergy Use. Annual Review of Environment and Resources, 2015, 40, 121-150.	5.6	83
12	Constructing Sustainable Biofuels: Governance of the Emerging Biofuel Economy. Annals of the American Association of Geographers, 2011, 101, 827-838.	3.0	81
13	Current debates and future research needs in the clean cookstove sector. Energy for Sustainable Development, 2014, 20, 49-57.	2.0	79
14	Innovation in charcoal production: A comparative life-cycle assessment of two kiln technologies in Brazil. Energy for Sustainable Development, 2013, 17, 189-200.	2.0	70
15	Greenhouse Gas Implications of Household Energy Technology in Kenya. Environmental Science & Technology, 2003, 37, 2051-2059.	4.6	68
16	Comparative analysis of key socio-economic and environmental impacts of smallholder and plantation based jatropha biofuel production systems in Tanzania. Biomass and Bioenergy, 2014, 61, 25-45.	2.9	68
17	ENERGY MANAGEMENT AND GLOBAL HEALTH. Annual Review of Environment and Resources, 2004, 29, 383-419.	5.6	56
18	Carbon impacts of direct land use change in semiarid woodlands converted to biofuel plantations in India and Brazil. GCB Bioenergy, 2011, 3, 449-460.	2.5	53

ROBERT BAILIS

#	Article	IF	CITATIONS
19	Potential greenhouse gas benefits of transatlantic wood pellet trade. Environmental Research Letters, 2014, 9, 024007.	2.2	51
20	Identification of advantageous electricity generation options in sub-Saharan Africa integrating existing resources. Nature Energy, 2016, 1, .	19.8	51
21	Modeling climate change mitigation from alternative methods of charcoal production in Kenya. Biomass and Bioenergy, 2009, 33, 1491-1502.	2.9	45
22	Getting the numbers right: revisiting woodfuel sustainability in the developing world. Environmental Research Letters, 2017, 12, 115002.	2.2	43
23	Quantifying GWI of Wood Pellet Production in the Southern United States and Its Subsequent Utilization for Electricity Production in The Netherlands/Florida. Bioenergy Research, 2011, 4, 180-192.	2.2	39
24	Wasteland energy-scapes: A comparative energy flow analysis of India's biofuel and biomass economies. Ecological Economics, 2014, 108, 8-17.	2.9	34
25	The revolution from the kitchen: Social processes of the removal of traditional cookstoves in Himachal Pradesh, India. Energy for Sustainable Development, 2015, 27, 127-136.	2.0	31
26	Determinants of Cookstoves and Fuel Choice Among Rural Households in India. EcoHealth, 2019, 16, 21-60.	0.9	31
27	A novel bioenergy feedstock in Latin America? Cultivation potential of Acrocomia aculeata under current and future climate conditions. Biomass and Bioenergy, 2016, 91, 186-195.	2.9	29
28	In-use emissions from biomass and LPG stoves measured during a large, multi-year cookstove intervention study in rural India. Science of the Total Environment, 2021, 758, 143698.	3.9	29
29	Cogenerating electricity from charcoaling: A promising new advanced technology. Energy for Sustainable Development, 2013, 17, 171-176.	2.0	28
30	Integrated policy assessment and optimisation over multiple sustainable development goals in Eastern Africa. Environmental Research Letters, 2019, 14, 094001.	2.2	27
31	Diffusion of non-traditional cookstoves across western Honduras: A social network analysis. Energy Policy, 2014, 66, 379-389.	4.2	26
32	Spatiotemporal modeling of fuelwood environmental impacts: Towards improved accounting for non-renewable biomass. Environmental Modelling and Software, 2016, 82, 241-254.	1.9	23
33	Capital cost subsidies through India's Ujjwala cooking gas programme promote rapid adoption of liquefied petroleum gas but not regular use. Nature Energy, 2020, 5, 125-126.	19.8	22
34	Is Use of Both Pulpwood and Logging Residues Instead of Only Logging Residues for Bioenergy Development a Viable Carbon Mitigation Strategy?. Bioenergy Research, 2014, 7, 217-231.	2.2	21
35	A systematic review of household energy transition in low and middle income countries. Energy Research and Social Science, 2022, 86, 102463.	3.0	21
36	Environmental and social implications of integrated seawater agriculture systems producing <i>Salicornia bigelovii</i> for biofuel. Biofuels, 2012, 3, 555-574.	1.4	20

ROBERT BAILIS

#	Article	IF	CITATIONS
37	Impact of payments for carbon sequestered in wood products and avoided carbon emissions on the profitability of NIPF landowners in the US South. Ecological Economics, 2012, 78, 63-69.	2.9	16
38	Aligning evidence generation and use across health, development, and environment. Current Opinion in Environmental Sustainability, 2019, 39, 81-93.	3.1	16
39	Opening the black pot: A service design-driven approach to understanding the use of cleaner cookstoves in peri-urban Kenya. Energy Research and Social Science, 2020, 70, 101754.	3.0	16
40	Energy access and the ultra-poor: Do unconditional social cash transfers close the energy access gap in Malawi?. Energy for Sustainable Development, 2021, 60, 102-112.	2.0	16
41	Perceptions of stakeholders about nontraditional cookstoves in Honduras. Environmental Research Letters, 2012, 7, 044036.	2.2	15
42	Biofuel sustainability in Latin America and the Caribbean – a review of recent experiences and future prospects. Biofuels, 2014, 5, 469-485.	1.4	15
43	International Sustainability Standards and Certification. , 2014, , 27-69.		15
44	Assessment of the Cambodian National Biodigester Program. Energy for Sustainable Development, 2018, 46, 11-22.	2.0	14
45	Assessing the Effects of Stove Use Patterns and Kitchen Chimneys on Indoor Air Quality during a Multiyear Cookstove Randomized Control Trial in Rural India. Environmental Science & Technology, 2022, 56, 8326-8337.	4.6	14
46	Forest, farms and fuelwood: Measuring changes in fuelwood collection and consumption behavior from a clean cooking intervention. Energy for Sustainable Development, 2021, 61, 196-205.	2.0	13
47	Enhancing clean cooking options in peri-urban Kenya: a pilot study of advanced gasifier stove adoption. Environmental Research Letters, 2020, 15, 084017.	2.2	13
48	Climate change mitigation and sustainable development through carbon sequestration: experiences in Latin America. Energy for Sustainable Development, 2006, 10, 74-87.	2.0	12
49	Environmental Implications of Jatropha Biofuel from a Silvi-Pastoral Production System in Central-West Brazil. Environmental Science & Technology, 2013, 47, 8042-8050.	4.6	12
50	Potential environmental benefits from woodfuel transitions in Haiti: Geospatial scenarios to 2027. Environmental Research Letters, 2018, 13, 035007.	2.2	12
51	The risk of survey bias in self-reports vs. actual consumption of clean cooking fuels. World Development Perspectives, 2020, 18, 100199.	0.8	12
52	Wood in Household Energy Use. , 2004, , 509-526.		10
53	A Global Synthesis of Jatropha Cultivation: Insights into Land Use Change and Management Practices. Environmental Science & Technology, 2016, 50, 8993-9002.	4.6	10
54	A comparative analysis of bioeconomy visions and pathways based on stakeholder dialogues in Colombia, Rwanda, Sweden, and Thailand. Journal of Environmental Policy and Planning, 2022, 24, 680-700.	1.5	10

ROBERT BAILIS

#	Article	IF	CITATIONS
55	Biofuels investments in tropical forestâ€rich countries: implications for responsible finance. Sustainability Accounting, Management and Policy Journal, 2012, 3, 134-160.	2.4	9
56	Insights into Jatropha Projects Worldwide - Key Facts & Figures from a Global Survey. SSRN Electronic Journal, 2013, , .	0.4	9
57	Discussion of forest definitions and tree cover estimates for Haiti. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5202-5203.	3.3	8
58	Global Warming Impact of E85 Fuel Derived from Forest Biomass: A Case Study from Southern USA. Bioenergy Research, 2012, 5, 470-480.	2.2	7
59	Ecological Sustainability of Woodfuel as an Energy Source in Rural Communities. , 2012, , 299-325.		5
60	Foreign policy â€~trilemmas': understanding China's stance on international cap-and-trade. Climate Policy, 2015, 15, 494-516.	2.6	5
61	Low-cost interventions to reduce emissions and fuel consumption in open wood fires in rural communities. Energy for Sustainable Development, 2020, 58, 119-128.	2.0	5
62	The Role of Technology Management in the Dynamics of Greenhouse Gas Emissions From Household Energy Use in Sub-Saharan Africa. Journal of Environment and Development, 2005, 14, 149-174.	1.6	4
63	SDG 7: Affordable and Clean Energy – How Access to Affordable and Clean Energy Affects Forests and Forest-Based Livelihoods. , 2019, , 206-236.		3
64	Low-cost interventions to reduce emissions and fuel consumption in open wood fires in rural communities: Evidence from field surveys. Energy for Sustainable Development, 2021, 63, 145-152.	2.0	3
65	Brazil: Biodiesel. , 2014, , 103-126.		3
66	A landscapeâ€based approach for assessing spatiotemporal impacts of forest biomassâ€based electricity generation on the age structure of surrounding forest plantations in the <scp>S</scp> outhern <scp>U</scp> nited <scp>S</scp> tates. GCB Bioenergy, 2012, 4, 342-357.	2.5	2
67	Energy and Poverty: The Perspective of Poor Countries. , 2011, , .		2

Voluntary Emissions Reduction. , 0, , 241-273.