List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4364296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. Journal of the American Chemical Society, 2009, 131, 3152-3153.	6.6	1,511
2	High-Sensitivity Humidity Sensor Based on a Single SnO2Nanowire. Journal of the American Chemical Society, 2007, 129, 6070-6071.	6.6	825
3	Semiconductor@Metal–Organic Framework Core–Shell Heterostructures: A Case of ZnO@ZIF-8 Nanorods with Selective Photoelectrochemical Response. Journal of the American Chemical Society, 2013, 135, 1926-1933.	6.6	691
4	MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties. ACS Applied Materials & amp; Interfaces, 2015, 7, 13604-13611.	4.0	687
5	MOF-Templated Synthesis of Porous Co ₃ O ₄ Concave Nanocubes with High Specific Surface Area and Their Gas Sensing Properties. ACS Applied Materials & Interfaces, 2014, 6, 4186-4195.	4.0	682
6	Synthesis of Tin Dioxide Octahedral Nanoparticles with Exposed Highâ€Energy {221} Facets and Enhanced Gas‣ensing Properties. Angewandte Chemie - International Edition, 2009, 48, 9180-9183.	7.2	405
7	Controlling Morphologies and Tuning the Related Properties of Nano/Microstructured ZnO Crystallites. Journal of Physical Chemistry C, 2009, 113, 584-589.	1.5	349
8	Synthesis of porous Cu ₂ O/CuO cages using Cu-based metal–organic frameworks as templates and their gas-sensing properties. Journal of Materials Chemistry A, 2015, 3, 12796-12803.	5.2	341
9	Synthesis of Trisoctahedral Gold Nanocrystals with Exposed Highâ€Index Facets by a Facile Chemical Method. Angewandte Chemie - International Edition, 2008, 47, 8901-8904.	7.2	309
10	Giant Enhancement in UV Response of ZnO Nanobelts by Polymer Surface-Functionalization. Journal of the American Chemical Society, 2007, 129, 12096-12097.	6.6	305
11	Surface Structure Dependent Electrocatalytic Activity of Co3O4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction. Scientific Reports, 2013, 3, 2300.	1.6	274
12	Syntheses and Properties of Micro/Nanostructured Crystallites with Highâ€Energy Surfaces. Advanced Functional Materials, 2010, 20, 3634-3645.	7.8	230
13	Cu ²⁺ -Assisted Synthesis of Hexoctahedral Au–Pd Alloy Nanocrystals with High-Index Facets. Journal of the American Chemical Society, 2011, 133, 17114-17117.	6.6	229
14	Atomically dispersed hierarchically ordered porous Fe–N–C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery. Nano Energy, 2020, 71, 104547.	8.2	206
15	Formation of ZnO hexagonal micro-pyramids: a successful control of the exposed polar surfaces with the assistance of an ionic liquid. Chemical Communications, 2005, , 5572.	2.2	205
16	High-Energy-Surface Engineered Metal Oxide Micro- and Nanocrystallites and Their Applications. Accounts of Chemical Research, 2014, 47, 308-318.	7.6	203
17	Supersaturation-Controlled Shape Evolution of α-Fe ₂ O ₃ Nanocrystals and Their Facet-Dependent Catalytic and Sensing Properties. ACS Applied Materials & Interfaces, 2014, 6, 12505-12514.	4.0	196
18	Tailoring the Optical Property by a Three-Dimensional Epitaxial Heterostructure:Â A Case of ZnO/SnO2. Journal of the American Chemical Society, 2005, 127, 11777-11784.	6.6	195

#	Article	IF	CITATIONS
19	Shape-Dependent Antibacterial Activities of Ag ₂ O Polyhedral Particles. Langmuir, 2010, 26, 2774-2778.	1.6	176
20	The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO ₂ -based sensors: a case study on the {221} high-index faceted SnO ₂ octahedra. CrystEngComm, 2015, 17, 6308-6313.	1.3	159
21	Optimizing the Electromagnetic Wave Absorption Performances of Designed Co ₃ Fe ₇ @C Yolk–Shell Structures. ACS Applied Materials & Interfaces, 2018, 10, 28839-28849.	4.0	147
22	Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment. Journal of Materials Chemistry, 2009, 19, 6154.	6.7	139
23	Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Applied Physics Letters, 2007, 90, 262107.	1.5	137
24	The function of metal–organic frameworks in the application of MOF-based composites. Nanoscale Advances, 2020, 2, 2628-2647.	2.2	136
25	Template Synthesis of Single-Crystal-Like Porous SrTiO ₃ Nanocube Assemblies and Their Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2013, 5, 3683-3690.	4.0	135
26	Inflating hollow nanocrystals through a repeated Kirkendall cavitation process. Nature Communications, 2017, 8, 1261.	5.8	135
27	Cyclic Penta-Twinned Rhodium Nanobranches as Superior Catalysts for Ethanol Electro-oxidation. Journal of the American Chemical Society, 2018, 140, 11232-11240.	6.6	133
28	Stable palladium hydride as a superior anode electrocatalyst for direct formic acid fuel cells. Nano Energy, 2018, 44, 127-134.	8.2	131
29	Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy, 2017, 39, 582-589.	8.2	130
30	Enhancing the Photon- and Gas-Sensing Properties of a Single SnO ₂ Nanowire Based Nanodevice by Nanoparticle Surface Functionalization. Journal of Physical Chemistry C, 2008, 112, 11539-11544.	1.5	128
31	Fabrication of Cluster/Shell Fe ₃ O ₄ /Au Nanoparticles and Application in Protein Detection via a SERS Method. Journal of Physical Chemistry C, 2010, 114, 19607-19613.	1.5	120
32	Mesoporous TiO ₂ Single Crystals: Facile Shape-, Size-, and Phase-Controlled Growth and Efficient Photocatalytic Performance. ACS Applied Materials & Interfaces, 2013, 5, 11249-11257.	4.0	116
33	Enhancing the Photocatalytic Activity of Anatase TiO ₂ by Improving the Specific Facetâ€Induced Spontaneous Separation of Photogenerated Electrons and Holes. Chemistry - an Asian Journal, 2013, 8, 282-289.	1.7	115
34	Excavated Cubic Platinum–Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with Enhanced Electrocatalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 9021-9025.	7.2	111
35	Controlled Synthesis and Enhanced Catalytic and Gasâ€Sensing Properties of Tin Dioxide Nanoparticles with Exposed Highâ€Energy Facets. Chemistry - A European Journal, 2012, 18, 2283-2289.	1.7	103
36	Surface Engineering Protocol To Obtain an Atomically Dispersed Pt/CeO ₂ Catalyst with High Activity and Stability for CO Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 14054-14062.	3.2	102

#	Article	IF	CITATIONS
37	Synthesis of Concave Palladium Nanocubes with Highâ€Index Surfaces and High Electrocatalytic Activities. Chemistry - A European Journal, 2011, 17, 9915-9919.	1.7	98
38	Low temperature solvothermal synthesis of crumpled carbon nanosheets. Carbon, 2004, 42, 1737-1741.	5.4	97
39	Solid state precursor strategy for synthesizing hollow TiO2 boxes with a high percentage of reactive {001} facets exposed. Chemical Communications, 2011, 47, 6722.	2.2	93
40	Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces. Nano Research, 2012, 5, 181-189.	5.8	92
41	Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Research, 2012, 5, 826-832.	5.8	91
42	Edge Enrichment of Ultrathin 2D PdPtCu Trimetallic Nanostructures Effectuates Top-Ranked Ethanol Electrooxidation. Nano Letters, 2020, 20, 5458-5464.	4.5	90
43	Photo-induced Au–Pd alloying at TiO ₂ {101} facets enables robust CO ₂ photocatalytic reduction into hydrocarbon fuels. Journal of Materials Chemistry A, 2019, 7, 1334-1340.	5.2	89
44	Fabrication of the SnO ₂ /α-Fe ₂ O ₃ Hierarchical Heterostructure and Its Enhanced Photocatalytic Property. Journal of Physical Chemistry C, 2011, 115, 7874-7879.	1.5	88
45	Surfactant oncentrationâ€Dependent Shape Evolution of Au–Pd Alloy Nanocrystals from Rhombic Dodecahedron to Trisoctahedron and Hexoctahedron. Small, 2013, 9, 538-544.	5.2	88
46	A Facile synthesis of flower-like Co3O4 porous spheres for the lithium-ion battery electrode. Journal of Solid State Chemistry, 2010, 183, 600-605.	1.4	81
47	Mesoporous Mn3O4–CoO core–shell spheres wrapped by carbon nanotubes: a high performance catalyst for the oxygen reduction reaction and CO oxidation. Journal of Materials Chemistry A, 2014, 2, 3794.	5.2	81
48	Growth of Prussian Blue Microcubes under a Hydrothermal Condition:  Possible Nonclassical Crystallization by a Mesoscale Self-Assembly. Journal of Physical Chemistry C, 2007, 111, 4499-4502.	1.5	80
49	Carbonate ions-assisted syntheses of anatase TiO2 nanoparticles exposed with high energy (001) facets. RSC Advances, 2012, 2, 3251.	1.7	80
50	Engineering a high energy surface of anatase TiO ₂ crystals towards enhanced performance for energy conversion and environmental applications. RSC Advances, 2015, 5, 20396-20409.	1.7	79
51	Biomimetic Metal–Organic Framework Composite-Mediated Cascade Catalysis for Synergistic Bacteria Killing. ACS Applied Materials & Interfaces, 2020, 12, 36996-37005.	4.0	78
52	Template-free construction of hollow α-Fe ₂ O ₃ hexagonal nanocolumn particles with an exposed special surface for advanced gas sensing properties. Nanoscale, 2015, 7, 9416-9420.	2.8	77
53	Syntheses of Nano/Submicrostructured Metal Oxides with All Polar Surfaces Exposed via a Molten Salt Route. Crystal Growth and Design, 2009, 9, 192-196.	1.4	76
54	Engineering high-energy surfaces of noble metal nanocrystals with enhanced catalytic performances. Nano Today, 2016, 11, 661-677.	6.2	76

#	Article	IF	CITATIONS
55	Atomically dispersed Pt/CeO2 catalyst with superior CO selectivity in reverse water gas shift reaction. Applied Catalysis B: Environmental, 2021, 291, 120101.	10.8	75
56	Synthesis of u-channelled spherical Fe _x (Co _y Ni _{1â^'y}) _{100â^'x} Janus colloidal particles with excellent electromagnetic wave absorption performance. Nanoscale, 2018, 10, 1930-1938.	2.8	67
57	Quatermetallic Pt-based ultrathin nanowires intensified by Rh enable highly active and robust electrocatalysts for methanol oxidation. Nano Energy, 2020, 71, 104623.	8.2	64
58	The Origin of Green Emission of ZnO Microcrystallites:  Surface-Dependent Light Emission Studied by Cathodoluminescence. Journal of Physical Chemistry C, 2007, 111, 12091-12093.	1.5	62
59	Shape-controlled fabrication of porous ZnO architectures and their photocatalytic properties. Journal of Solid State Chemistry, 2009, 182, 115-121.	1.4	62
60	Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres. Journal of Materials Chemistry, 2011, 21, 9620.	6.7	62
61	Controllable fabrication of SnO2-coated multiwalled carbon nanotubes by chemical vapor deposition. Carbon, 2006, 44, 1166-1172.	5.4	56
62	Syntheses of rare-earth metal oxide nanotubes by the sol–gel method assisted with porous anodic aluminum oxide templates. Journal of Solid State Chemistry, 2007, 180, 1236-1242.	1.4	55
63	Versatile fabrication of aligned SnO ₂ nanotube arrays by using various ZnO arrays as sacrificial templates. Journal of Materials Chemistry, 2009, 19, 1019-1023.	6.7	55
64	Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation. CrystEngComm, 2013, 15, 6127-6130.	1.3	55
65	Ultrafine ZnO quantum dot-modified TiO ₂ composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2018, 8, 1296-1303.	2.1	55
66	N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells. Nano Research, 2019, 12, 2490-2497.	5.8	54
67	Toward Rationally Designing Surface Structures of Micro- and Nanocrystallites: Role of Supersaturation. Accounts of Chemical Research, 2018, 51, 2880-2887.	7.6	53
68	Singleâ€Atom Molybdenum Engineered Platinum Nanocatalyst for Boosted Alkaline Hydrogen Oxidation. Advanced Energy Materials, 2022, 12, .	10.2	53
69	Controlled Encapsulation of Flower-like Rh–Ni Alloys with MOFs via Tunable Template Dealloying for Enhanced Selective Hydrogenation of Alkyne. ACS Applied Materials & Interfaces, 2016, 8, 31059-31066.	4.0	52
70	Selective Catalytic Performances of Noble Metal Nanoparticle@MOF Composites: The Concomitant Effect of Aperture Size and Structural Flexibility of MOF Matrices. Chemistry - A European Journal, 2017, 23, 11397-11403.	1.7	50
71	Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33, 303001.	0.7	49
72	Trimetallic PtNiCo branched nanocages as efficient and durable bifunctional electrocatalysts towards oxygen reduction and methanol oxidation reactions. Journal of Materials Chemistry A, 2021, 9, 23444-23450.	5.2	49

#	Article	IF	CITATIONS
73	Supercrystals from Crystallization of Octahedral MnO Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 19107-19111.	1.5	48
74	pH-Induced Simultaneous Synthesis and Self-Assembly of 3D Layered β-FeOOH Nanorods. Langmuir, 2010, 26, 2745-2750.	1.6	45
75	Efficiently Enhancing Visible Light Photocatalytic Activity of Faceted TiO ₂ Nanocrystals by Synergistic Effects of Core–Shell Structured Au@CdS Nanoparticles and Their Selective Deposition. ACS Applied Materials & Interfaces, 2016, 8, 21326-21333.	4.0	43
76	Metal–Organic Framework as a Compartmentalized Integrated Nanozyme Reactor to Enable High-Performance Cascade Reactions for Glucose Detection. ACS Sustainable Chemistry and Engineering, 2020, 8, 17783-17790.	3.2	43
77	Nanosheet-assembled, hollowed-out hierarchical γ-Fe ₂ O ₃ microrods for high-performance gas sensing. Journal of Materials Chemistry A, 2020, 8, 3754-3762.	5.2	43
78	Synthesis of layered protonated titanate hierarchical microspheres with extremely large surface area for selective adsorption of organic dyes. CrystEngComm, 2012, 14, 7715.	1.3	42
79	Tuning electronic structure of PdZn nanocatalyst via acid-etching strategy for highly selective and stable electrolytic nitrogen fixation under ambient conditions. Applied Catalysis B: Environmental, 2020, 265, 118568.	10.8	42
80	Constructing oxide/sulfide in-plane heterojunctions with enlarged internal electric field for efficient CO2 photoreduction. Applied Catalysis B: Environmental, 2021, 297, 120394.	10.8	41
81	Close-Packed Colloidal SiO2as a Nanoreactor: Generalized Synthesis of Metal Oxide Mesoporous Single Crystals and Mesocrystals. Chemistry of Materials, 2014, 26, 5700-5709.	3.2	40
82	MOF encapsulated sub-nm Pd skin/Au nanoparticles as antenna-reactor plasmonic catalyst for light driven CO2 hydrogenation. Nano Energy, 2021, 84, 105950.	8.2	40
83	Control of Anatase TiO ₂ Nanocrystals with a Series of Highâ€Energy Crystal Facets via a Fuorineâ€Free Strategy. Chemistry - an Asian Journal, 2012, 7, 2538-2542.	1.7	39
84	Preparation and Optical Properties of ThO2and Eu-Doped ThO2Nanotubes by the Solâ^'Gel Method Combined with Porous Anodic Aluminum Oxide Template. Journal of Physical Chemistry B, 2006, 110, 23007-23011.	1.2	37
85	Control of the Surface of ZnO Nanostructures by Selective Wet-Chemical Etching. Journal of Physical Chemistry C, 2010, 114, 10114-10118.	1.5	37
86	Synthesis of trapezohedral indium oxide nanoparticles with high-index {211} facets and high gas sensing activity. Chemical Communications, 2015, 51, 9612-9615.	2.2	37
87	Intense and wavelength-tunable photoluminescence from surface functionalized MgO nanocrystal clusters. Journal of Materials Chemistry, 2011, 21, 7263.	6.7	36
88	Synthesis of spatially uniform metal alloys nanocrystals via a diffusion controlled growth strategy: The case of Au-Pd alloy trisoctahedral nanocrystals with tunable composition. Nano Research, 2012, 5, 618-629.	5.8	36
89	Synthesis and enhanced electromagnetic wave absorption performance of amorphous CoxFe10-x alloys. Journal of Alloys and Compounds, 2017, 726, 1255-1261.	2.8	35
90	Effect of Rutile Content on the Catalytic Performance of Ru/TiO ₂ Catalyst for Low-Temperature CO ₂ Methanation. ACS Sustainable Chemistry and Engineering, 2021, 9, 14288-14296.	3.2	34

#	Article	IF	CITATIONS
91	Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure. Nano Research, 2015, 8, 2698-2705.	5.8	33
92	Coordination effect assisted synthesis of ultrathin Pt layers on second metal nanocrystals as efficient oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 13033-13039.	5.2	31
93	Ternary Alloys Encapsulated within Different MOFs via a Selfâ€Sacrificing Template Process: A Potential Platform for the Investigation of Sizeâ€Selective Catalytic Performances. Small, 2017, 13, 1700683.	5.2	31
94	A nano-reactor based on PtNi@metal–organic framework composites loaded with polyoxometalates for hydrogenation–esterification tandem reactions. Nanoscale, 2019, 11, 3292-3299.	2.8	31
95	Twin-Crystal Nature of the Single-Crystal-Like Branched Cu ₂ O Particles. Journal of Physical Chemistry C, 2008, 112, 13405-13409.	1.5	29
96	Sierpinski gasket-like Pt–Ag octahedral alloy nanocrystals with enhanced electrocatalytic activity and stability. Nano Energy, 2019, 61, 397-403.	8.2	29
97	One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection. Nano Research, 2019, 12, 3031-3036.	5.8	28
98	Probing the structural flexibility of MOFs by constructing metal oxide@MOF-based heterostructures for size-selective photoelectrochemical response. Nanoscale, 2016, 8, 13181-13185.	2.8	27
99	Templated synthesis of diluted magnetic semiconductors using transition metal ion-doped metal〓organic frameworks: the case of Co-doped ZnO. CrystEngComm, 2016, 18, 4121-4126.	1.3	26
100	Efficient oxygen reduction on sandwich-like metal@N–C composites with ultrafine Fe nanoparticles embedded in N-doped carbon nanotubes grafted on graphene sheets. Nanoscale, 2019, 11, 12610-12618.	2.8	26
101	Two-Dimensionally Assembled Pd–Pt–Ir Supernanosheets with Subnanometer Interlayer Spacings toward High-Efficiency and Durable Water Splitting. ACS Catalysis, 2022, 12, 5305-5315.	5.5	26
102	Magnetic-field-assisted aerosol pyrolysis synthesis of iron pyrite sponge-like nanochain networks as cost-efficient counter electrodes in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5508-5515.	5.2	22
103	Efficiently enhancing the photocatalytic activity of faceted TiO ₂ nanocrystals by selectively loading α-Fe ₂ O ₃ and Pt co-catalysts. RSC Advances, 2016, 6, 29794-29801.	1.7	22
104	Construct efficient substrate transport and catalytic sub-nanochannels in metal-organic framework-based nanozymes for boosting peroxidase-like catalytic activity. Chemical Engineering Journal, 2022, 430, 133079.	6.6	22
105	General and Facile Syntheses of Metal Silicate Porous Hollow Nanostructures. Chemistry - an Asian Journal, 2010, 5, 1439-1444.	1.7	21
106	Direct synthesis of silver/polymer/carbon nanocables via a simple hydrothermal route. Journal of Solid State Chemistry, 2008, 181, 2359-2363.	1.4	20
107	Palladium NPs supported on sulfonic acid functionalized metal–organic frameworks as catalysts for biomass cascade reactions. Dalton Transactions, 2019, 48, 5515-5519.	1.6	20
108	Rationally Armoring PtCu Alloy with Metalâ€Organic Frameworks as Highly Selective Nonenzyme Electrochemical Sensor. Advanced Materials Interfaces, 2018, 5, 1801168.	1.9	19

#	Article	IF	CITATIONS
109	Agl Microplate Monocrystals with Polar {0001} Facets: Spontaneous Photocarrier Separation and Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2014, 20, 2637-2645.	1.7	18
110	Synthesis of single-crystal hyperbranched rhodium nanoplates with remarkable catalytic properties. Science China Materials, 2017, 60, 685-696.	3.5	18
111	Morphology evolution of NaTaO3 submicrometer single-crystals: from cubes to quasi-spheres. Science China Materials, 2015, 58, 281-288.	3.5	17
112	Size-Controlled Intermetallic PtZn Nanoparticles on N-Doped Carbon Support for Enhanced Electrocatalytic Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 3821-3827.	3.2	17
113	Edge-segregated ternary Pd–Pt–Ni spiral nanosheets as high-performance bifunctional oxygen redox electrocatalysts for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2022, 10, 3808-3817.	5.2	17
114	Research Progress of Photocatalytic CO2 Reduction Based on Two-dimensional Materials. Acta Chimica Sinica, 2021, 79, 10.	0.5	16
115	Organic–Inorganic Interfaceâ€Induced Multiâ€Fluorescence of MgO Nanocrystal Clusters and Their Applications in Cellular Imaging. Chemistry - A European Journal, 2014, 20, 5244-5252.	1.7	15
116	Heterometallic metal-organic framework-templated synthesis of porous Co 3 O 4 /ZnO nanocage catalysts for the carbonylation of glycerol. Journal of Solid State Chemistry, 2017, 256, 93-100.	1.4	15
117	Hollow porous rhodium nanoballs. Chemical Communications, 2019, 55, 4989-4992.	2.2	15
118	<i>In situ</i> construction and post-electrolysis structural study of porous Ni ₂ P@C nanosheet arrays for efficient water splitting. Inorganic Chemistry Frontiers, 2020, 7, 2960-2968.	3.0	14
119	Hot-electron-induced CO2 hydrogenation on Au@AuRu/g-C3N4 plasmonic bimetal–semiconductor heterostructure. Chemical Engineering Journal, 2022, 443, 136482.	6.6	13
120	Directional Etching Formation of Single-Crystalline Branched Nanostructures: A Case of Six-Horn-like Manganese Oxide. Journal of Physical Chemistry C, 2009, 113, 2867-2872.	1.5	12
121	A surfactant free synthesis and formation mechanism of hollow Cu ₂ 0 nanocubes using Cl ^{â^'} ions as the morphology regulator. RSC Advances, 2015, 5, 61421-61425.	1.7	11
122	Origin of symmetry breaking in the seed-mediated growth of bi-metal nano-heterostructures. Science Bulletin, 2018, 63, 892-899.	4.3	10
123	Design of ternary Pt–CoZn alloy catalysts coated with N-doped carbon towards acidic oxygen reduction. Materials Advances, 2021, 2, 5479-5486.	2.6	10
124	Dynamic Phase Transition of Iron Oxycarbide Facilitated by Pt Nanoparticles for Promoting the Reverse Water Gas Shift Reaction. ACS Catalysis, 2021, 11, 14586-14595.	5.5	10
125	MOF Encapsulated AuPt Bimetallic Nanoparticles for Improved Plasmonicâ€induced Photothermal Catalysis of CO ₂ Hydrogenation. Chemistry - A European Journal, 2022, 28, .	1.7	10
126	Liquid–liquid interface assisted synthesis of size- and thickness-controlled Ag nanoplates. Journal of Solid State Chemistry, 2010, 183, 1354-1358.	1.4	9

#	Article	IF	CITATIONS
127	Chemically initiated liquid-like behavior and fabrication of periodic wavy Cu/CuAu nanocables with enhanced catalytic properties. Nanoscale, 2018, 10, 9012-9020.	2.8	8
128	Hexagonal ZnO/SnO2 core–shell micropyramids: epitaxial growth-based synthesis, chemical conversion, and cathodoluminescence. Inorganic Chemistry Frontiers, 2014, 1, 186.	3.0	7
129	Optimization of gold–palladium core–shell nanowires towards H ₂ O ₂ reduction by adjusting shell thickness. Nanoscale Advances, 2020, 2, 785-791.	2.2	7
130	Solution-Processed, Barrier-Confined, and 1D Nanostructure Supported Quasi-quantum Well with Large Photoluminescence Enhancement. ACS Nano, 2014, 8, 3771-3780.	7.3	6
131	Morphology led high dispersion of Pt icosahedral nanocrystals on carbon nanotubes for enhanced electro-catalytic activity and stability. Chemical Communications, 2018, 54, 10855-10858.	2.2	6
132	Tailoring the Chemical Potential of Crystal Growth Units to Tune the Bulk Structure of Nanocrystals. Small Methods, 2021, 5, e2000447.	4.6	6
133	Concave nano-octahedral alloys: wet chemical synthesis of bimetallic Pt–Pd nanocrystals with high-index {hhl} Facets. Dalton Transactions, 2021, 50, 12083-12087.	1.6	6
134	Tensions at Liquid Interfaces:  A General Filter for the Separation of Micro-/Nanoparticles. Langmuir, 2008, 24, 2281-2283.	1.6	5
135	Ag2S nanocaps from AgBr nanoplates: Template symmetry breaking synthesis induced by the polar surfaces. CrystEngComm, 2014, 16, 4940.	1.3	5
136	Surface structure-dependent electrocatalytic reduction of CO ₂ to C1 products on SnO ₂ catalysts. Sustainable Energy and Fuels, 2020, 4, 600-606.	2.5	5
137	Facile synthesis of clean PtAg dendritic nanostructures with enhanced electrochemical properties. Inorganic Chemistry Frontiers, 2020, 7, 1250-1256.	3.0	4
138	Platinumâ€Tin/Tin Oxide/CNT Catalysts for Highâ€Performance Electrocatalytic Ethanol Oxidation. Chemistry - A European Journal, 2022, 28, .	1.7	4
139	A dispersive scattering centers-based strategy for dramatically enhancing the photocatalytic efficiency of photocatalysts in liquid-phase photochemical processes: a case of Ag nanosheets. Nanoscale, 2013, 5, 1793.	2.8	1
140	Engineering surface of anatase TiO2 nanocrystals toward enhanced catalytic activity in photochemistry. , 2013, , .		0
141	A Single SnO2 Nanowire-Based Microelectrode. Methods in Molecular Biology, 2011, 726, 111-117.	0.4	0