Jacquelyn C Witte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4363934/publications.pdf

Version: 2024-02-01

61 papers

4,608 citations

87723 38 h-index 60 g-index

78 all docs 78 docs citations

times ranked

78

3206 citing authors

#	Article	IF	CITATIONS
1	Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements. Journal of Geophysical Research, 2003, 108, .	3.3	329
2	Assessment of the performance of ECCâ \in ozonesondes under quasiâ \in flight conditions in the environmental simulation chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE). Journal of Geophysical Research, 2007, 112, .	3.3	282
3	Tropical Tropospheric Ozone and Biomass Burning. Science, 2001, 291, 2128-2132.	6.0	202
4	Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 2. Tropospheric variability and the zonal wave-one. Journal of Geophysical Research, 2003, 108, .	3.3	188
5	Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements. Journal of Geophysical Research, 2008, 113, .	3.3	181
6	A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. Atmospheric Chemistry and Physics, 2011, 11, 9237-9251.	1.9	168
7	Alaskan and Canadian forest fires exacerbate ozone pollution over Houston, Texas, on 19 and 20 July 2004 . Journal of Geophysical Research, 2006 , 111 , .	3 . 3	138
8	Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE). Atmospheric Chemistry and Physics, 2009, 9, 287-343.	1.9	134
9	Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics. Geophysical Research Letters, 2009, 36, .	1.5	120
10	Tropical ozone as an indicator of deep convection. Journal of Geophysical Research, 2002, 107, ACH 13-1.	3.3	119
11	Atmospheric comparison of electrochemical cell ozonesondes from different manufacturers, and with different cathode solution strengths: The Balloon Experiment on Standards for Ozonesondes. Journal of Geophysical Research, 2008, 113, .	3. 3	119
12	Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation. Atmospheric Chemistry and Physics, 2019, 19, 3257-3269.	1.9	119
13	Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2004 tropical ozone climatology: 3. Instrumentation, station-to-station variability, and evaluation with simulated flight profiles. Journal of Geophysical Research, 2007, 112, .	3.3	115
14	A tropical Atlantic Paradox: Shipboard and satellite views of a tropospheric ozone maximum and wave-one in January-February 1999. Geophysical Research Letters, 2000, 27, 3317-3320.	1.5	113
15	Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network. Journal of Geophysical Research, 2006, 111, .	3.3	113
16	NASA A-Train and Terra observations of the 2010 Russian wildfires. Atmospheric Chemistry and Physics, 2011, 11, 9287-9301.	1.9	104
17	A trajectoryâ€based estimate of the tropospheric ozone column using the residual method. Journal of Geophysical Research, 2007, 112, .	3.3	93
18	Trends and variability in surface ozone over the United States. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9020-9042.	1.2	90

#	Article	IF	CITATIONS
19	Estimating the summertime tropospheric ozone distribution over North America through assimilation of observations from the Tropospheric Emission Spectrometer. Journal of Geophysical Research, 2008, 113, .	3.3	87
20	Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) 2004: 1. Summertime upper troposphere/lower stratosphere ozone over northeastern North America. Journal of Geophysical Research, 2007, 112 , .	3.3	82
21	Evidence for a recurring eastern North America upper tropospheric ozone maximum during summer. Journal of Geophysical Research, 2007, 112, .	3.3	81
22	Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) 2004: 2. Tropospheric ozone budgets and variability over northeastern North America. Journal of Geophysical Research, 2007, 112, .	3.3	77
23	Assimilated ozone from EOSâ€Aura: Evaluation of the tropopause region and tropospheric columns. Journal of Geophysical Research, 2008, 113, .	3.3	75
24	Regional levels of ozone in the troposphere over eastern Mediterranean. Journal of Geophysical Research, 2002, 107, PAU 7-1.	3.3	74
25	First reprocessing of Southern Hemisphere ADditional OZonesondes (SHADOZ) profile records (1998–2015): 1. Methodology and evaluation. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6611-6636.	1.2	74
26	Tropospheric ozone increases over the southern Africa region: bellwether for rapid growth in Southern Hemisphere pollution?. Atmospheric Chemistry and Physics, 2014, 14, 9855-9869.	1.9	71
27	Seasonal cycles of O3, CO, and convective outflow at the tropical tropopause. Geophysical Research Letters, 2006, 33, .	1.5	68
28	Tropospheric ozone sources and wave activity over Mexico City and Houston during MILAGRO/Intercontinental Transport Experiment (INTEX-B) Ozonesonde Network Study, 2006 (IONS-06). Atmospheric Chemistry and Physics, 2008, 8, 5113-5125.	1.9	63
29	Strategic ozone sounding networks: Review of design and accomplishments. Atmospheric Environment, 2011, 45, 2145-2163.	1.9	63
30	First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998–2016): 2. Comparisons With Satellites and Groundâ€Based Instruments. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,000.	1.2	61
31	Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005–2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMIâ€based ozone products. Journal of Geophysical Research, 2012, 117, .	3.3	58
32	Homogenizing and estimating the uncertainty in NOAA's long-term vertical ozone profile records measured with the electrochemical concentration cell ozonesonde. Atmospheric Measurement Techniques, 2018, $11,3661-3687$.	1.2	56
33	Enhanced view of the "tropical Atlantic ozone paradox―and "zonal wave one―from the in situ MOZAIC and SHADOZ data. Journal of Geophysical Research, 2006, 111, .	3.3	54
34	Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations. Atmospheric Measurement Techniques, 2017, 10, 2455-2475.	1.2	53
35	The unique OMI HCHO/NO2 feature during the 2008 Beijing Olympics: Implications for ozone production sensitivity. Atmospheric Environment, 2011, 45, 3103-3111.	1.9	50
36	Impact of the assimilation of ozone from the Tropospheric Emission Spectrometer on surface ozone across North America. Geophysical Research Letters, 2009, 36 , .	1.5	49

#	Article	IF	Citations
37	The global structure of upper troposphereâ€lower stratosphere ozone in GEOSâ€5: A multiyear assimilation of EOS Aura data. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2013-2036.	1.2	46
38	First Reprocessing of Southern Hemisphere ADditional OZonesondes Profile Records: 3. Uncertainty in Ozone Profile and Total Column. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3243-3268.	1.2	46
39	The governing processes and timescales of stratosphere-to-troposphere transport and its contribution to ozone in the Arctic troposphere. Atmospheric Chemistry and Physics, 2009, 9, 3011-3025.	1.9	45
40	Trace gas transport and scavenging in PEM-Tropics B South Pacific Convergence Zone convection. Journal of Geophysical Research, 2001, 106, 32591-32607.	3.3	41
41	Comparison of Canadian air quality forecast models with tropospheric ozone profile measurements above midlatitude North America during the IONS/ICARTT campaign: Evidence for stratospheric input. Journal of Geophysical Research, 2007, 112, .	3.3	40
42	Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5671-5699.	1.2	40
43	Temperature dependence of factors controlling isoprene emissions. Geophysical Research Letters, 2009, 36, .	1.5	36
44	Initial validation of ozone measurements from the High Resolution Dynamics Limb Sounder. Journal of Geophysical Research, 2008, 113, .	3.3	31
45	The Quasi-biennial Oscillation and annual variations in tropical ozone from SHADOZ and HALOE. Atmospheric Chemistry and Physics, 2008, 8, 3929-3936.	1.9	31
46	Global-scale distribution of ozone in the remote troposphere from the ATom and HIPPO airborne field missions. Atmospheric Chemistry and Physics, 2020, 20, 10611-10635.	1.9	31
47	Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	30
48	Improving ECC Ozonesonde Data Quality: Assessment of Current Methods and Outstanding Issues. Earth and Space Science, 2021, 8, e2019EA000914.	1.1	30
49	SHADOZ—A TROPICAL OZONESONDE–RADIOSONDE NETWORK FOR THE ATMOSPHERIC COMMUNITY. Bulletin of the American Meteorological Society, 2004, 85, 1549-1564.	1.7	29
50	Gravity and Rossby wave signatures in the tropical troposphere and lower stratosphere based on Southern Hemisphere Additional Ozonesondes (SHADOZ), 1998–2007. Journal of Geophysical Research, 2011, 116, .	3.3	29
51	Regional and Seasonal Trends in Tropical Ozone From SHADOZ Profiles: Reference for Models and Satellite Products. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034691.	1.2	28
52	Ozonesonde Quality Assurance: The JOSIE–SHADOZ (2017) Experience. Bulletin of the American Meteorological Society, 2019, 100, 155-171.	1.7	23
53	Characterizing Global Ozonesonde Profile Variability From Surface to the UT/LS With a Clustering Technique and MERRAâ€⊋ Reanalysis. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6213-6229.	1.2	21
54	Linking horizontal and vertical transports of biomass fire emissions to the Tropical Atlantic Ozone Paradox during the Northern Hemisphere winter season: 1999. Journal of Geophysical Research, 2003, 108, .	3.3	20

#	Article	IF	CITATION
55	A Postâ€2013 Dropoff in Total Ozone at a Third of Global Ozonesonde Stations: Electrochemical Concentration Cell Instrument Artifacts?. Geophysical Research Letters, 2020, 47, e2019GL086791.	1.5	19
56	Lusaka, Zambia, during SAFARI-2000: Convergence of local and imported ozone pollution. Geophysical Research Letters, 2002, 29, 37-1-37-4.	1.5	16
57	A new method to correct the electrochemical concentration cell (ECC) ozonesonde time response and its implications for "background current―and pump efficiency. Atmospheric Measurement Techniques, 2020, 13, 5667-5680.	1.2	15
58	TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI. Atmospheric Measurement Techniques, 2021, 14, 7405-7433.	1.2	14
59	The NASA Wallops Flight Facility Digital Ozonesonde Record: Reprocessing, Uncertainties, and Dual Launches. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3565-3582.	1.2	9
60	Large-scale enhancements in NO/NOyfrom subsonic aircraft emissions: Comparisons with observations. Journal of Geophysical Research, 1997, 102, 28169-28175.	3.3	5
61	Cause of a Lowerâ€Tropospheric Highâ€Ozone Layer in Spring Over Hanoi. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	0