Hiroshi Mizuno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4363907/publications.pdf

Version: 2024-02-01

430754 395590 1,589 36 18 33 citations h-index g-index papers 36 36 36 2413 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DNA marker analysis of flowering time, semiâ€dwarf, fertility restorer, and brown midrib genes in sorghum (<scp><i>Sorghum bicolor</i></scp> [L.] Moench). Grassland Science, 2022, 68, 101-113.	0.6	2
2	Fine mapping of <i>Rf5</i> region for a sorghum fertility restorer gene and microsynteny analysis across grass species. Breeding Science, 2022, 72, 141-149.	0.9	1
3	Evolutionary dynamics and impacts of chromosome regions carrying R-gene clusters in rice. Scientific Reports, 2020, 10, 872.	1.6	22
4	Molecular mapping and identification of candidate gene conferring organophosphateâ€sensitive reaction in sorghum (Sorghum bicolor). Plant Breeding, 2020, 139, 600-607.	1.0	2
5	Composition and Structure of Rice Centromeres and Telomeres. , 2018, , 37-52.		6
6	Root lodging is a physical stress that changes gene expression from sucrose accumulation to degradation in sorghum. BMC Plant Biology, 2018, 18, 2.	1.6	27
7	Expression of Flavone Synthase II and Flavonoid 3′-Hydroxylase Is Associated with Color Variation in Tan-Colored Injured Leaves of Sorghum. Frontiers in Plant Science, 2016, 7, 1718.	1.7	18
8	Classification of genotypes of leaf phenotype (<i>P</i> / <i>tan</i>) and seed phenotype (<i>Y1</i> and) Tj ETQq	0 0 0 rgBT	Overlock 10
9	The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnology for Biofuels, 2016, 9, 127.	6.2	99
10	The Sorghum Gene for Leaf Color Changes upon Wounding (<i>P</i>) Encodes a Flavanone 4-Reductase in the 3-Deoxyanthocyanidin Biosynthesis Pathway. G3: Genes, Genomes, Genetics, 2016, 6, 1439-1447.	0.8	36
11	Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Scientific Reports, 2016, 6, 28366.	1.6	81
12	Recommended Ethical Safeguards on Fertilization of Human Germ Cells Derived from Pluripotent Stem Cells Solely for Research Purposes. Stem Cell Reviews and Reports, 2016, 12, 377-384.	5.6	1
13	Ethical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese Expert Panel on Bioethics. Life Sciences, Society and Policy, 2015, 11, 15.	3.1	11
14	Ethical Issues for Clinical Studies That use Human Embryonic Stem Cells: The 2014 Revisions to the Japanese Guidelines. Stem Cell Reviews and Reports, 2015, 11, 676-680.	5.6	3
15	Expression level of a flavonoid $3\hat{a}\in^2$ -hydroxylase gene determines pathogen-induced color variation in sorghum. BMC Research Notes, 2014, 7, 761.	0.6	22
16	Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding. Scientific Reports, 2014, 4, 5287.	1.6	54
17	Characterization of Chromosomal Ends on the Basis of Chromosome-Specific Telomere Variants and Subtelomeric Repeats in Rice (Oryza sativa L.)., 2014, , 187-194.		4
18	Genomic inversion caused by gamma irradiation contributes to downregulation of a WBC11 homolog in bloomless sorghum. Theoretical and Applied Genetics, 2013, 126, 1513-1520.	1.8	12

#	Article	IF	Citations
19	A <scp>BAC</scp> physical map of <i>aus</i> rice cultivar <scp>K</scp> asalath', and the mapâ€based genomic sequence of <scp>K</scp> asalath' chromosome 1. Plant Journal, 2013, 76, 699-708.	2.8	13
20	Simultaneous Transcriptome Analysis of Sorghum and Bipolaris sorghicola by Using RNA-seq in Combination with De Novo Transcriptome Assembly. PLoS ONE, 2013, 8, e62460.	1.1	79
21	Independent Domestication of Asian Rice Followed by Gene Flow from japonica to indica. Molecular Biology and Evolution, 2012, 29, 1471-1479.	3.5	70
22	Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-Bipolaris sorghicolainteraction. BMC Plant Biology, 2012, 12, 121.	1.6	42
23	Asymmetric Distribution of Gene Expression in the Centromeric Region of Rice Chromosome 5. Frontiers in Plant Science, 2011, 2, 16.	1.7	15
24	mRNA-Seq Reveals a Comprehensive Transcriptome Profile of Rice under Phosphate Stress. Rice, 2011, 4, 50-65.	1.7	45
25	Retrogenes in Rice (Oryza sativa L. ssp. japonica) Exhibit Correlated Expression with Their Source Genes. Genome Biology and Evolution, 2011, 3, 1357-1368.	1.1	62
26	Characterization of 2159 Unmapped Full-length cDNA Sequences of Oryza sativa L. ssp. japonica â€~Nipponbare'. Plant Molecular Biology Reporter, 2010, 28, 357-362.	1.0	0
27	Massive parallel sequencing of mRNA in identification of unannotated salinity stress-inducible transcripts in rice (Oryza sativa L.). BMC Genomics, 2010, 11, 683.	1.2	76
28	Comparative analysis of complete orthologous centromeres from two subspecies of rice reveals rapid variation of centromere organization and structure. Plant Journal, 2009, 60, 805-819.	2.8	22
29	Comparative Analysis of Rice Genome Sequence to Understand the Molecular Basis of Genome Evolution. Rice, 2008, 1, 119-126.	1.7	6
30	Characterization of chromosome ends on the basis of the structure of TrsA subtelomeric repeats in rice (Oryza sativa L.). Molecular Genetics and Genomics, 2008, 280, 19-24.	1.0	12
31	The Rice Genome Sequence as an Indispensable Tool for Crop Improvement. Biotechnology in Agriculture and Forestry, 2008, , 3-12.	0.2	2
32	Chromosome-Specific Distribution of Nucleotide Substitutions in Telomeric Repeats of Rice (Oryza) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5
33	Sequencing and characterization of telomere and subtelomere regions on rice chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. Plant Journal, 2006, 46, 206-217.	2.8	60
34	Identification and Mapping of Expressed Genes, Simple Sequence Repeats and Transposable Elements in Centromeric Regions of Rice Chromosomes. DNA Research, 2006, 13, 267-274.	1.5	18
35	Physical maps and recombination frequency of six rice chromosomes. Plant Journal, 2003, 36, 720-730.	2.8	126
36	The genome sequence and structure of rice chromosome 1. Nature, 2002, 420, 312-316.	13.7	519