
## Neil M Burnside

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4363810/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                           | IF                         | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|
| 1  | Sulphur isotopes in deep groundwater reservoirs: Evidence from post-stimulation flowback at the<br>Pohang geothermal facility, Korea. Geothermics, 2021, 91, 102003.                                                                                                                                                              | 1.5                        | 2         |
| 2  | Permeability and Mineralogy of the Újfalu Formation, Hungary, from Production Tests and<br>Experimental Rock Characterization: Implications for Geothermal Heat Projects. Energies, 2021, 14,<br>4332.                                                                                                                            | 1.6                        | 3         |
| 3  | Geothermal energy resources in Ethiopia: Status review and insights from hydrochemistry of surface<br>and groundwaters. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1554.                                                                                                                                                   | 2.8                        | 11        |
| 4  | A Review of the Performance of Minewater Heating and Cooling Systems. Energies, 2021, 14, 6215.                                                                                                                                                                                                                                   | 1.6                        | 18        |
| 5  | Roadblocks to Low Temperature District Heating. Energies, 2020, 13, 5893.                                                                                                                                                                                                                                                         | 1.6                        | 10        |
| 6  | On the common occurrence of sulphate with elevated δ34S in European mine waters: Sulphides, evaporites or seawater?. International Journal of Coal Geology, 2020, 232, 103619.                                                                                                                                                    | 1.9                        | 13        |
| 7  | A combined pumping test and heat extraction/recirculation trial in an abandoned haematite ore mine shaft, Egremont, Cumbria, UK. Sustainable Water Resources Management, 2019, 5, 51-69.                                                                                                                                          | 1.0                        | 8         |
| 8  | Fault "Corrosion―by Fluid Injection: A Potential Cause of the November 2017 <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>id="M1"&gt;<mml:msub><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mtext>W5.5 Korean Earthquake. Geofluids, 2019, 2019, 1-23.</mml:mtext></mml:mrow></mml:msub></mml:math<br> | text> <td>ıl:mrow&gt;</td> | ıl:mrow>  |
| 9  | An Investigation into the Limitations of Low Temperature District Heating on Traditional Tenement<br>Buildings in Scotland. Energies, 2019, 12, 2603.                                                                                                                                                                             | 1.6                        | 8         |
| 10 | Rapid water-rock interactions evidenced by hydrochemical evolution of flowback fluid during<br>hydraulic stimulation of a deep geothermal borehole in granodiorite: Pohang, Korea. Applied<br>Geochemistry, 2019, 111, 104445.                                                                                                    | 1.4                        | 8         |
| 11 | Surface and groundwater hydrochemistry in the mid-Gregory Rift, Kenya: first impressions and potential implications for geothermal systems. E3S Web of Conferences, 2019, 98, 07004.                                                                                                                                              | 0.2                        | Ο         |
| 12 | Exponential trends in flowback chemistry from a hydraulically stimulated deep geothermal borehole<br>in granite; Pohang, South Korea. E3S Web of Conferences, 2019, 98, 08001.                                                                                                                                                    | 0.2                        | 0         |
| 13 | Surface and Groundwater Hydrochemistry of the Menengai Caldera Geothermal Field and<br>Surrounding Nakuru County, Kenya. Energies, 2019, 12, 3131.                                                                                                                                                                                | 1.6                        | 9         |
| 14 | 420,000 year assessment of fault leakage rates shows geological carbon storage is secure. Scientific Reports, 2019, 9, 769.                                                                                                                                                                                                       | 1.6                        | 34        |
| 15 | Baseline groundwater monitoring for shale gas extraction: definition of baseline conditions and recommendations from a real site (Wysin, Northern Poland). Acta Geophysica, 2019, 67, 365-384.                                                                                                                                    | 1.0                        | 8         |
| 16 | District Heating Challenges for the UK. Energies, 2019, 12, 310.                                                                                                                                                                                                                                                                  | 1.6                        | 37        |
| 17 | Digging deeper: The influence of historical mining on Glasgow's subsurface thermal state to inform geothermal research. Scottish Journal of Geology, 2019, 55, 107-123.                                                                                                                                                           | 0.1                        | 7         |
| 18 | A Review of the Hydrochemistry of a Deep Sedimentary Aquifer and Its Consequences for Geothermal<br>Operation: Klaipeda, Lithuania. Geofluids, 2019, 2019, 1-20.                                                                                                                                                                  | 0.3                        | 12        |

NEIL M BURNSIDE

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom. Sustainable Water Resources Management, 2019, 5, 29-50.                                                                                                    | 1.0 | 47        |
| 20 | Hydrochemical characterization of a mine water geothermal energy resource in NW Spain. Science of the Total Environment, 2017, 576, 59-69.                                                                                                                                         | 3.9 | 47        |
| 21 | Sustainability of thermal energy production at the flooded mine workings of the former Caphouse<br>Colliery, Yorkshire, United Kingdom. International Journal of Coal Geology, 2016, 164, 85-91.                                                                                   | 1.9 | 40        |
| 22 | Hydrochemistry and stable isotopes as tools for understanding the sustainability of minewater<br>geothermal energy production from a †standing column' heat pump system: Markham Colliery,<br>Bolsover, Derbyshire, UK. International Journal of Coal Geology, 2016, 165, 223-230. | 1.9 | 32        |
| 23 | Preliminary investigation on temperature, chemistry and isotopes of mine water pumped in Bytom<br>geological basin (USCB Poland) as a potential geothermal energy source. International Journal of<br>Coal Geology, 2016, 164, 104-114.                                            | 1.9 | 21        |
| 24 | Review and implications of relative permeability of CO2/brine systems and residual trapping of CO2.<br>International Journal of Greenhouse Gas Control, 2014, 23, 1-11.                                                                                                            | 2.3 | 131       |
| 25 | QICS Work Package 1: Migration and Trapping of CO2 from a Reservoir to the Seabed or Land Surface.<br>Energy Procedia, 2013, 37, 4673-4681.                                                                                                                                        | 1.8 | 1         |
| 26 | Man-made versus natural CO2 leakage: A 400 k.y. history of an analogue for engineered geological storage of CO2. Geology, 2013, 41, 471-474.                                                                                                                                       | 2.0 | 81        |
| 27 | Pulses of carbon dioxide emissions from intracrustal faults following climatic warming. Nature<br>Geoscience, 2012, 5, 352-358.                                                                                                                                                    | 5.4 | 101       |