John C Wenger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4363682/publications.pdf

Version: 2024-02-01

		94269	58464
106	7,945	37	82
papers	citations	h-index	g-index
130	130	130	6373
130	130	130	03/3
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 2009, 9, 5155-5236.	1.9	3,486
2	Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmospheric Chemistry and Physics, 2005, 5, 641-664.	1.9	442
3	Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature, 1997, 389, 835-838.	13.7	216
4	Characterisation of single particles from in-port ship emissions. Atmospheric Environment, 2009, 43, 6408-6414.	1.9	148
5	Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris. Atmospheric Chemistry and Physics, 2012, 12, 1681-1700.	1.9	128
6	High Sensitivityin SituMonitoring of NO3in an Atmospheric Simulation Chamber Using Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy. Environmental Science & Envir	4.6	127
7	Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign. Atmospheric Chemistry and Physics, 2016, 16, 455-504.	1.9	110
8	Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2013, 13, 9479-9496.	1.9	108
9	Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene. Atmospheric Chemistry and Physics, 2008, 8, 3215-3230.	1.9	101
10	Source apportionment of PM _{2.5} in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements. Atmospheric Chemistry and Physics, 2010, 10, 9593-9613.	1.9	98
11	Lightâ€nbsorbing properties of ambient black carbon and brown carbon from fossil fuel and biomass burning sources. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6619-6633.	1.2	98
12	On the spatial distribution and evolution of ultrafine particles in Barcelona. Atmospheric Chemistry and Physics, 2013, 13, 741-759.	1.9	85
13	Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. Scientific Reports, 2016, 6, 35038.	1.6	80
14	Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 4997-5015.	1.9	75
15	Molecular composition of fresh and aged secondary organic aerosol from a mixture of biogenic volatile compounds: a high-resolution mass spectrometry study. Atmospheric Chemistry and Physics, 2015, 15, 5683-5695.	1.9	74
16	Near-Ultraviolet Absorption Cross Sections of Nitrophenols and Their Potential Influence on Tropospheric Oxidation Capacity. Journal of Physical Chemistry A, 2011, 115, 12235-12242.	1.1	73
17	Rate Coefficients for the Gas-Phase Reaction of Hydroxyl Radicals with 2-Methoxyphenol (Guaiacol) and Related Compounds. Journal of Physical Chemistry A, 2010, 114, 11645-11650.	1.1	70
18	Molecular composition of biogenic secondary organic aerosols using ultrahigh-resolution mass spectrometry: comparing laboratory and field studies. Atmospheric Chemistry and Physics, 2014, 14, 2155-2167.	1.9	70

#	Article	IF	CITATIONS
19	Kinetic Studies on the Reactions of Hydroxyl Radicals with Diethers and Hydroxyethers. Journal of Physical Chemistry A, 1997, 101, 5770-5775.	1.1	65
20	Title is missing!. Journal of Atmospheric Chemistry, 1998, 30, 187-207.	1.4	64
21	Kinetic Studies on the Reactions of Hydroxyl Radicals with Cyclic Ethers and Aliphatic Diethers. Journal of Physical Chemistry A, 2003, 107, 1499-1505.	1.1	64
22	Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study. Atmospheric Environment, 2014, 89, 525-532.	1.9	64
23	The use of polar organic compounds to estimate the contribution of domestic solid fuel combustion and biogenic sources to ambient levels of organic carbon and PM2.5 in Cork Harbour, Ireland. Science of the Total Environment, 2011, 409, 2143-2155.	3.9	63
24	Kinetics of the Gas-Phase Reactions of OH and NO3Radicals with Dimethylphenols. Journal of Physical Chemistry A, 2004, 108, 11019-11025.	1.1	62
25	Effect of Relative Humidity on Gas/Particle Partitioning and Aerosol Mass Yield in the Photooxidation of <i>p</i> -Xylene. Environmental Science & Envi	4.6	61
26	Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview. Atmospheric Chemistry and Physics, 2010, 10, 8413-8435.	1.9	61
27	Extreme air pollution from residential solid fuel burning. Nature Sustainability, 2018, 1, 512-517.	11.5	59
28	A Denuder-Filter Sampling Technique for the Detection of Gas and Particle Phase Carbonyl Compounds. Environmental Science & En	4.6	57
29	Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles. Atmospheric Chemistry and Physics, 2009, 9, 3815-3823.	1.9	54
30	Fine and Ultrafine Particles in the Vicinity of Industrial Activities: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 2305-2356.	6.6	50
31	Molecular composition of organic aerosols at urban background and road tunnel sites using ultra-high resolution mass spectrometry. Faraday Discussions, 2016, 189, 51-68.	1.6	50
32	Single particle diversity and mixing state measurements. Atmospheric Chemistry and Physics, 2014, 14, 6289-6299.	1.9	49
33	Simulation Chamber Studies of the Atmospheric Oxidation of 2-Methyl-3-Buten-2-ol: Reaction with Hydroxyl Radicals and Ozone Under a Variety of Conditions. Journal of Atmospheric Chemistry, 2006, 56, 33-55.	1.4	48
34	Characterization of Polar Compounds and Oligomers in Secondary Organic Aerosol Using Liquid Chromatography Coupled to Mass Spectrometry. Analytical Chemistry, 2008, 80, 474-480.	3.2	48
35	Single-particle speciation of alkylamines in ambient aerosol at five European sites. Analytical and Bioanalytical Chemistry, 2015, 407, 5899-5909.	1.9	47
36	Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth. Journal of Geophysical Research, 2012, 117, .	3.3	44

#	Article	IF	CITATIONS
37	Quantification of black carbon mixing state from traffic: implications for aerosol optical properties. Atmospheric Chemistry and Physics, 2016, 16, 4693-4706.	1.9	43
38	A kinetic and mechanistic study of the gas-phase reactions of OH radicals and Cl atoms with some halogenated acetones and their atmospheric implications. Physical Chemistry Chemical Physics, 2003, 5, 3874.	1.3	42
39	Structure–activity relationship (SAR) for the gas-phase ozonolysis of aliphatic alkenes and dialkenes. Physical Chemistry Chemical Physics, 2008, 10, 1757.	1.3	42
40	Aerosol formation yields from the reaction of catechol with ozone. Atmospheric Environment, 2009, 43, 2360-2365.	1.9	41
41	Single-particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium. Atmospheric Chemistry and Physics, 2016, 16, 5561-5572.	1.9	41
42	Sources and mixing state of summertime background aerosol in the north-western Mediterranean basin. Atmospheric Chemistry and Physics, 2017, 17, 6975-7001.	1.9	41
43	Kinetic and Mechanistic Study of OH- and Cl-Initiated Oxidation of Two Unsaturated HFCs:  C4F9CHCH2 and C6F13CHCH2. Journal of Physical Chemistry A, 2000, 104, 8512-8520.	1.1	39
44	Heterosupramolecular Chemistry:Â Self-Assembly of an Electron Donor (TiO2Nanocrystallite)â^'Acceptor (Viologen) Complexâ€. Chemistry of Materials, 1997, 9, 1765-1772.	3.2	38
45	Determination of Arrhenius parameters for the reactions of ozone with cycloalkenes. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2877-2881.	1.7	37
46	The atmospheric photolysis of E-2-hexenal, Z-3-hexenal and E,E-2,4-hexadienal. Physical Chemistry Chemical Physics, 2006, 8, 5236-5246.	1.3	37
47	Characterisation of airborne particles and associated organic components produced from incense burning. Analytical and Bioanalytical Chemistry, 2011, 401, 3095-3102.	1.9	35
48	Gas- and Particle-Phase Products from the Chlorine-Initiated Oxidation of Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry A, 2015, 119, 11170-11181.	1.1	35
49	Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry. Environmental Pollution, 2017, 228, 92-101.	3.7	35
50	Structure–activity relationship (SAR) for the prediction of gas-phase ozonolysis rate coefficients: an extension towards heteroatomic unsaturated species. Physical Chemistry Chemical Physics, 2011, 13, 2842-2849.	1.3	31
51	Kinetics and products of the gas-phase reactions of acenaphthylene with hydroxyl radicals, nitrate radicals and ozone. Atmospheric Environment, 2013, 75, 103-112.	1.9	31
52	Characterization of Primary Organic Aerosol from Domestic Wood, Peat, and Coal Burning in Ireland. Environmental Science & Env	4.6	31
53	Self-Assembly of Heterosupermolecules. Chemistry of Materials, 1997, 9, 624-631.	3.2	30
54	The use of real-time monitoring data to evaluate major sources of airborne particulate matter. Atmospheric Environment, 2010, 44, 1116-1125.	1.9	30

#	Article	IF	Citations
55	Gas-phase reaction of (E)- \hat{l}^2 -farnesene with ozone: Rate coefficient and carbonyl products. Atmospheric Environment, 2009, 43, 3182-3190.	1.9	29
56	Kinetics and products of the gas-phase reactions of acenaphthene with hydroxyl radicals, nitrate radicals and ozone. Atmospheric Environment, 2013, 72, 97-104.	1.9	29
57	Kinetics of the gas-phase reactions of OH and NO3 radicals with aromatic aldehydes. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 172-182.	2.0	27
58	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. Atmospheric Chemistry and Physics, 2013, 13, 8991-9019.	1.9	27
59	On the simultaneous deployment of two single-particle mass spectrometers at an urban background and a roadside site during SAPUSS. Atmospheric Chemistry and Physics, 2016, 16, 9693-9710.	1.9	27
60	Kinetic Studies of OH and O3 Reactions with Allyl and Isopropenyl Acetate. Journal of Atmospheric Chemistry, 2000, 37, 161-172.	1.4	26
61	Photolysis of Chloral under Atmospheric Conditions. Environmental Science & Emp; Technology, 2004, 38, 831-837.	4.6	26
62	Rapid Formation of Secondary Organic Aerosol from the Photolysis of 1-Nitronaphthalene: Role of Naphthoxy Radical Self-reaction. Environmental Science & Environmental Science & 2012, 46, 11813-11820.	4.6	26
63	Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions. Environmental Pollution, 2016, 210, 9-17.	3.7	24
64	Simulation of particle diversity and mixing state over Greater Paris: a model–measurement inter-comparison. Faraday Discussions, 2016, 189, 547-566.	1.6	23
65	Upper limits for absorption by water vapor in the near-UV. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 170, 194-199.	1.1	20
66	Mechanisms for the chlorine atom initiated oxidation of dimethoxymethane and 1,2-dimethoxyethane in the presence of NOx. Chemosphere, 1999, 38, 1197-1204.	4.2	19
67	Optical, physical and chemical properties of aerosols transported to a coastal site in the western Mediterranean: a focus on primary marine aerosols. Atmospheric Chemistry and Physics, 2017, 17, 7891-7915.	1.9	19
68	Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques. Science of the Total Environment, 2014, 493, 197-208.	3.9	18
69	Kinetics of the Gas-Phase Reactions of Chlorine Atoms with Naphthalene, Acenaphthene, and Acenaphthylene. Journal of Physical Chemistry A, 2014, 118, 3535-3540.	1.1	16
70	Predicting hygroscopic growth using single particle chemical composition estimates. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9567-9577.	1.2	16
71	Gas- and particle-phase products from the photooxidation of acenaphthene and acenaphthylene by OH radicals. Atmospheric Environment, 2017, 151, 34-44.	1.9	16
72	Investigation on the near-field evolution of industrial plumes from metalworking activities. Science of the Total Environment, 2019, 668, 443-456.	3.9	16

#	Article	IF	CITATIONS
73	The Atmospheric Photolysis of <i>>o</i> -Tolualdehyde. Environmental Science &	4.6	15
74	The influence of reaction conditions on the photooxidation of diisopropyl ether. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 86-97.	2.0	14
75	The Gas-phase Ozonolysis of 1-Penten-3-ol, (Z)-2-Penten-1-ol and 1-Penten-3-one: Kinetics, Products and Secondary Organic Aerosol Formation. Zeitschrift Fur Physikalische Chemie, 2010, 224, 1059-1080.	1.4	14
76	Gas phase reaction of OH radicals with (E)- \hat{l}^2 -farnesene at 296 \hat{A} + \hat{A} 2 \hat{A} K: Rate coefficient and carbonyl products. Atmospheric Environment, 2012, 46, 338-345.	1.9	14
77	Wintertime aerosol dominated by solid-fuel-burning emissions across Ireland: insight into the spatial and chemical variation in submicron aerosol. Atmospheric Chemistry and Physics, 2019, 19, 14091-14106.	1.9	14
78	Real-time Monitoring of Aerosol Generating Dental Procedures. Journal of Dentistry, 2022, 120, 104092.	1.7	14
79	Photochemistry of 2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer conditions. Physical Chemistry Chemical Physics, 2019, 21, 1160-1171.	1.3	13
80	Assessment of Environmental and Occupational Risk Factors for the Mitigation and Containment of a COVID-19 Outbreak in a Meat Processing Plant. Frontiers in Public Health, 2021, 9, 769238.	1.3	12
81	A new on-line SPE LC-HRMS method for the analysis of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in PM2.5 and its application for screening atmospheric particulates from Dublin and Enniscorthy, Ireland. Science of the Total Environment, 2022, 835, 155496.	3.9	12
82	Reflection–absorption IR spectrum of chlorine adatoms on the silver(100) surface. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 879-880.	1.7	11
83	Porous silica spheres as indoor air pollutant scavengers. Journal of Environmental Monitoring, 2010, 12, 2244.	2.1	11
84	Total OH reactivity measurements in laboratory studies of the photooxidation of isoprene. Atmospheric Environment, 2012, 62, 243-247.	1.9	11
85	Kinetic Studies on the Reactions of Hydroxyl Radicals with a Series of Alkoxy Esters. Journal of Physical Chemistry A, 2004, 108, 7386-7392.	1.1	10
86	Gas and particulate phase products from the ozonolysis of acenaphthylene. Atmospheric Environment, 2016, 142, 104-113.	1.9	10
87	Investigation of coastal sea-fog formation using the WIBS (wideband integrated bioaerosol sensor) technique. Atmospheric Chemistry and Physics, 2019, 19, 5737-5751.	1.9	10
88	The adsorption and thermal decomposition of dimethylzinc on Pt(111). Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 477-482.	0.8	9
89	Gaseous and Particulate Products from the Atmospheric Ozonolysis of a Biogenic Hydrocarbon, Sabinene. Environmental Chemistry, 2006, 3, 286.	0.7	9
90	A novel, broadband spectroscopic method to measure the extinction coefficient of aerosols in the near-ultraviolet. , $2013, \dots$		8

#	Article	IF	CITATIONS
91	Using a pattern recognition approach to link inorganic chemical fingerprints of ambient PM2.5–0.1 with in vitro biological effects. Air Quality, Atmosphere and Health, 2012, 5, 125-147.	1.5	7
92	Characterization and source apportionment of single particles from metalworking activities. Environmental Pollution, 2021, 270, 116078.	3.7	7
93	The role of co-adsorbed metal atoms in the chemistry of methyl species on $Pt(111)$ formed by the decomposition of dimethylmercury and dimethylzinc. Surface Science, 1996, 360, 81-92.	0.8	6
94	Airborne emissions in the harbour and port of Cork. Biomarkers, 2009, 14, 12-16.	0.9	6
95	An infrared study of the chemistry of methyl species on Pt(111) formed by the decomposition of dimethylmercury. Surface Science, 1996, 360, 93-103.	0.8	5
96	Rate coefficients for the gas-phase reaction of hydroxyl radicals with the dimethylbenzaldehydes. International Journal of Chemical Kinetics, 2006, 38, 563-569.	1.0	5
97	Product Study of the OH Radical and Cl Atom Initiated Oxidation of 1,3â€Dioxane. ChemPhysChem, 2010, 11, 3980-3986.	1.0	4
98	Chamber Studies on the Photolysis of Aldehydes Environmental. , 2006, , 111-119.		3
99	Distinct high molecular weight organic compound (HMW-OC) types in aerosol particles collected at a coastal urban site. Atmospheric Environment, 2017, 171, 118-125.	1.9	3
100	On the use of reference mass spectra for reducing uncertainty in source apportionment of solid-fuel burning in ambient organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 6905-6916.	1.2	3
101	The remarkable reaction of N2O with a binary component lanthanide oxide mixture. Chemical Communications, 2006, , 3889.	2.2	2
102	Temperature dependent rate coefficients for the reaction of OH radicals with dimethylbenzoquinones. Chemical Physics Letters, 2015, 639, 145-150.	1.2	1
103	Chemical complexity of the urban atmosphere and its consequences: general discussion. Faraday Discussions, 2016, 189, 137-167.	1.6	1
104	Kinetic Studies on the Reactions of Hydroxyl Radicals with Cyclic Ethers and Aliphatic Diethers. Journal of Physical Chemistry A, 2006, 110, 5224-5224.	1.1	0
105	Numerical modelling strategies for the urban atmosphere: general discussion. Faraday Discussions, 2016, 189, 635-660.	1.6	0
106	1638câ€Particles at work – and everywhere else. , 2018, , .		0