Franco Blanchini

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4363478/franco-blanchini-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

213 6,103 32 75 g-index

252 7,721 4 6.5 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
213	2022 , 6, 488-493		O
212	Structural analysis in biology: A control-theoretic approach. <i>Automatica</i> , 2021 , 126, 109376	5.7	2
211	Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceutical interventions in Italy. <i>Nature Medicine</i> , 2021 , 27, 993-998	50.5	70
210	Acoustic Target Tracking Through a Cluster of Mobile Agents. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 2587-2600	10.2	4
209	A threshold mechanism ensures minimum-path flow in lightning discharge. <i>Scientific Reports</i> , 2021 , 11, 280	4.9	2
208	Convergence in uncertain linear systems. <i>Automatica</i> , 2020 , 119, 109058	5.7	O
207	Stabilization of negative capacitance in ferroelectric capacitors with and without a metal interlayer. <i>Nanoscale</i> , 2020 , 12, 6121-6129	7.7	16
206	Asymmetric State Feedback for Linear Plants With Asymmetric Input Saturation 2020 , 4, 608-613		6
205	A multistationary loop model of ALS unveils critical molecular interactions involving mitochondria and glucose metabolism. <i>PLoS ONE</i> , 2020 , 15, e0244234	3.7	2
204	A Dynamic Biometric Authentication Algorithm for Near-Infrared Palm Vascular Patterns. <i>IEEE Access</i> , 2020 , 8, 118978-118988	3.5	3
203	Mal de Debarquement Syndrome: A Matter of Loops?. Frontiers in Neurology, 2020 , 11, 576860	4.1	2
202	Checking Structural Stability of BDC-Decomposable Systems via Convex Optimisation 2020 , 4, 205-210		4
201	Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. <i>Nature Medicine</i> , 2020 , 26, 855-860	50.5	845
200	Analysis of coupled genetic oscillators with delayed positive feedback interconnections 2019,		3
199	Loop analysis of blood pressure/volume homeostasis. <i>PLoS Computational Biology</i> , 2019 , 15, e1007346	5	5
198	The joint network/control design of platooning algorithms can enforce guaranteed safety constraints. <i>Ad Hoc Networks</i> , 2019 , 94, 101962	4.8	12
197	Network-decentralised optimisation and control: An explicit saturated solution. <i>Automatica</i> , 2019 , 103, 379-389	5.7	3

196	A network-decentralised strategy for shortest-path-flow routing 2019 ,		1
195	Revised analysis of negative capacitance in ferroelectric-insulator capacitors: analytical and numerical results, physical insight, comparison to experiments 2019 ,		3
194	2019 , 3, 260-265		1
193	Editorial to the Special Issue of L-CSS on Control and Network Theory for Biological Systems 2019 , 3, 228-229		3
192	Biometric Palmprint Verification: A Dynamical System Approach. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2019 , 49, 2676-2687	7.3	18
191	Homogeneous Time Constants Promote Oscillations in Negative Feedback Loops. <i>ACS Synthetic Biology</i> , 2018 , 7, 1481-1487	5.7	6
190	Switching and sweeping vibration absorbers: Theory and experimental validation. <i>Automatica</i> , 2018 , 93, 290-301	5.7	4
189	. IEEE Transactions on Control of Network Systems, 2018 , 5, 782-792	4	9
188	A Bounded Complementary Sensitivity Function Ensures Topology-Independent Stability of Homogeneous Dynamical Networks. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 1140-1146	5.9	5
187	Control-theoretic methods for biological networks 2018,		8
186	Uncertain Systems: Time-Varying Versus Time-Invariant Uncertainties. <i>Systems and Control: Foundations and Applications</i> , 2018 , 3-91	0.3	2
185	A Robust Saturated Strategy for \$n\$-Player Prisoner's Dilemma. <i>SIAM Journal on Control and Optimization</i> , 2018 , 56, 3478-3498	1.9	O
184	On the Convergence of Discrete-Time Linear Systems: A Linear Time-Varying Mann Iteration Converges IFF Its Operator Is Strictly Pseudocontractive 2018 , 2, 453-458		6
183	. IEEE Transactions on Control of Network Systems, 2017 , 4, 336-346	4	2
182	Stability analysis of an artificial biomolecular oscillator with non-cooperative regulatory interactions. <i>Journal of Biological Dynamics</i> , 2017 , 11, 102-120	2.4	10
181	2017 , 1, 44-49		3
180	Active Fault Isolation: A Duality-Based Approach via Convex Programming. <i>SIAM Journal on Control and Optimization</i> , 2017 , 55, 1619-1640	1.9	17
179	Polyhedral Lyapunov functions structurally ensure global asymptotic stability of dynamical networks iff the Jacobian is non-singular. <i>Automatica</i> , 2017 , 86, 183-191	5.7	17

178	A convex programming approach to the inverse kinematics problem for manipulators under constraints. <i>European Journal of Control</i> , 2017 , 33, 11-23	2.5	8
177	. IEEE Transactions on Automatic Control, 2017 , 62, 2623-2634	5.9	11
176	Discrete-Time Trials for Tuning without a Model. IFAC-PapersOnLine, 2017, 50, 1539-1544	0.7	
175	Topology-Independent Robust Stability of Homogeneous Dynamic Networks * *G.G. acknowledges support from the Swedish Research Council through the LCCC Linnaeus Center and the eLLIIT Excellence Center at Lund University <i>IFAC-PapersOnLine</i> , 2017 , 50, 1736-1741	0.7	1
174	A joint network/control design for cooperative automatic driving 2017,		7
173	Stable LPV realisation of the Smith predictor. <i>International Journal of Systems Science</i> , 2016 , 47, 2393-24	4 <u>0</u> .13	7
172	The Smallest Eigenvalue of the Generalized Laplacian Matrix, with Application to Network-Decentralized Estimation for Homogeneous Systems. <i>IEEE Transactions on Network Science and Engineering</i> , 2016 , 3, 312-324	4.9	12
171	Molecular Titration Promotes Oscillations and Bistability in Minimal Network Models with Monomeric Regulators. <i>ACS Synthetic Biology</i> , 2016 , 5, 321-33	5.7	35
170	Optimal control of a class of positive Markovian bilinear systems. <i>Nonlinear Analysis: Hybrid Systems</i> , 2016 , 21, 155-170	4.5	3
169	A switched system approach to dynamic race modelling. <i>Nonlinear Analysis: Hybrid Systems</i> , 2016 , 21, 37-48	4.5	1
168	Compartmental flow control: Decentralization, robustness and optimality. <i>Automatica</i> , 2016 , 64, 18-28	5.7	16
167	Computing the structural influence matrix for biological systems. <i>Journal of Mathematical Biology</i> , 2016 , 72, 1927-58	2	24
166	Robust constrained Model Predictive Control of fast electromechanical systems. <i>Journal of the Franklin Institute</i> , 2016 , 353, 2087-2103	4	7
165	Guide on set invariance for delay difference equations. <i>Annual Reviews in Control</i> , 2016 , 41, 13-23	10.3	10
164	A YoulaKuBra parameterization approach to output feedback relatively optimal control. <i>Systems and Control Letters</i> , 2015 , 81, 14-23	2.4	4
163	Set-Theoretic Methods in Control. Systems and Control: Foundations and Applications, 2015,	0.3	68
162	Set Invariance for Delay Difference Equations. IFAC-PapersOnLine, 2015, 48, 215-220	0.7	1
161	Robust linear parameter-varying control of induction motors. <i>International Journal of Robust and Nonlinear Control</i> , 2015 , 25, 1783-1800	3.6	

(2015-2015)

160	Network-Decentralized Control Strategies for Stabilization. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 491-496	5.9	25
159	Structural conditions for oscillations and multistationarity in aggregate monotone systems 2015,		10
158	Structural Stability of Biochemical Networks: Quadratic vs. Polyhedral Lyapunov Functions. <i>IFAC-PapersOnLine</i> , 2015 , 48, 278-283	0.7	2
157	Plant tuning: A robust Lyapunov approach 2015 ,		3
156	Inverse kinematics by means of convex programming: Some developments 2015,		4
155	Polyhedral Lyapunov functions for structural stability of biochemical systems in concentration and reaction coordinates 2015 ,		5
154	Properties of switching-dynamics race models 2015 ,		1
153	A dynamic algorithm for palmprint recognition 2015 ,		3
152	On the LPV Control Design and Its Applications to Some Classes of Dynamical Systems. <i>Lecture Notes in Control and Information Sciences</i> , 2015 , 319-338	0.5	1
151	Switched Positive Linear Systems. Foundations and Trends in Systems and Control, 2015, 2, 101-273	4	66
150	Switching and switched systems. Systems and Control: Foundations and Applications, 2015, 405-466	0.3	5
149	Set-theoretic analysis of dynamic systems. Systems and Control: Foundations and Applications, 2015, 235	-2837	
148	Invariant sets. Systems and Control: Foundations and Applications, 2015, 121-191	0.3	
147	Control of parameter-varying systems. Systems and Control: Foundations and Applications, 2015, 289-335	50.3	
146	Control with time-domain constraints. Systems and Control: Foundations and Applications, 2015, 337-404	0.3	О
145	(Sub-)Optimal Control. Systems and Control: Foundations and Applications, 2015, 467-525	0.3	
144	Related topics. Systems and Control: Foundations and Applications, 2015, 553-596	0.3	
143	Convex sets and their representation. Systems and Control: Foundations and Applications, 2015, 93-119	0.3	

142	Lyapunov and Lyapunov-like functions. Systems and Control: Foundations and Applications, 2015, 27-91	0.3	
141	Set-theoretic estimation. Systems and Control: Foundations and Applications, 2015, 527-551	0.3	
140	Convexity of the cost functional in an optimal control problem for a class of positive switched systems. <i>Automatica</i> , 2014 , 50, 1227-1234	5.7	49
139	Switching Gains for Semiactive Damping via Nonconvex Lyapunov Functions. <i>IEEE Transactions on Control Systems Technology</i> , 2014 , 22, 721-728	4.8	5
138	Piecewise-linear Lyapunov functions for structural stability of biochemical networks. <i>Automatica</i> , 2014 , 50, 2482-2493	5.7	41
137	A convexity result for the optimal control of a class of positive nonlinear systems. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 1507-1512		2
136	A structural classification of candidate oscillatory and multistationary biochemical systems. <i>Bulletin of Mathematical Biology</i> , 2014 , 76, 2542-69	2.1	28
135	Design of a molecular clock with RNA-mediated regulation 2014 ,		7
134	Network-decentralized robust congestion control with node traffic splitting 2014,		1
133	. IEEE Transactions on Automatic Control, 2014 , 59, 107-119	5.9	18
132	Structural Analysis of Biological Networks 2014 , 47-71		1
132	Structural Analysis of Biological Networks 2014 , 47-71 The linear saturated decentralized strategy for constrained flow control is asymptotically optimal. <i>Automatica</i> , 2013 , 49, 2206-2212	5.7	1
	The linear saturated decentralized strategy for constrained flow control is asymptotically optimal.		
131	The linear saturated decentralized strategy for constrained flow control is asymptotically optimal. <i>Automatica</i> , 2013 , 49, 2206-2212	5.7	
131	The linear saturated decentralized strategy for constrained flow control is asymptotically optimal. <i>Automatica</i> , 2013 , 49, 2206-2212 Fair and optimal dynamic admission control of elastic flows. <i>Computer Networks</i> , 2013 , 57, 1277-1288 A universal class of non-homogeneous control Lyapunov functions for linear differential inclusions	5.7	16
131 130 129	The linear saturated decentralized strategy for constrained flow control is asymptotically optimal. <i>Automatica</i> , 2013 , 49, 2206-2212 Fair and optimal dynamic admission control of elastic flows. <i>Computer Networks</i> , 2013 , 57, 1277-1288 A universal class of non-homogeneous control Lyapunov functions for linear differential inclusions 2013 , Structural properties of the MAPK pathway topologies in PC12 cells. <i>Journal of Mathematical</i>	5.7	2
131 130 129 128	The linear saturated decentralized strategy for constrained flow control is asymptotically optimal. <i>Automatica</i> , 2013 , 49, 2206-2212 Fair and optimal dynamic admission control of elastic flows. <i>Computer Networks</i> , 2013 , 57, 1277-1288 A universal class of non-homogeneous control Lyapunov functions for linear differential inclusions 2013 , Structural properties of the MAPK pathway topologies in PC12 cells. <i>Journal of Mathematical Biology</i> , 2013 , 67, 1633-68 A stabilizable switched linear system does not necessarily admit a smooth homogeneous Lyapunov	5.7	16 2 6

124	. IEEE Transactions on Automatic Control, 2012, 57, 3038-3050	5.9	94
123	Control-based p-persistent adaptive communication protocol. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2012 , 7, 1-18	1.2	4
122	Determining the structural properties of a class of biological models 2012 ,		11
121	Constant and switching gains in semi-active damping of vibrating structures. <i>International Journal of Control</i> , 2012 , 85, 1886-1897	1.5	14
120	An LPV control scheme for induction motors 2012 ,		3
119	A Convex Optimization Approach to Synthesizing Bounded Complexity \$ell^{infty}\$ Filters. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 216-221	5.9	12
118	Disturbance-driven model predictive control by means of YoulaKuBra parameter switching with an application to drainage canal control. <i>International Journal of Robust and Nonlinear Control</i> , 2012 , 22, 1362-1375	3.6	0
117	Analysis of a negative feedback biochemical oscillator 2012 ,		1
116	Parametric Gain-scheduling Control via LPV-stable Realization 2012 , 61-89		1
115	Adaptive plasma current control in RFX-mod. Fusion Engineering and Design, 2011, 86, 1005-1008	1.7	4
114	Robust Stability and Performance of a p-Persistent Communication Protocol. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 13251-13256		1
113	On optimal damping of vibrating structures. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 10268-10273		1
112	Structurally robust biological networks. BMC Systems Biology, 2011, 5, 74	3.5	52
111	Discrete-time control for switched positive systems with application to mitigating viral escape. <i>International Journal of Robust and Nonlinear Control</i> , 2011 , 21, 1093-1111	3.6	229
110	A novel algorithm for dynamic admission control of elastic flows 2011,		2
109	Is stabilization of switched positive linear systems equivalent to the existence of an Hurwitz convex combination of the system matrices? 2011 ,		3
108	Multistability and robustness of the MAPK pathway 2011,		1
107	Gain scheduling versus robust control of LPV systems: The output feedback case 2010 ,		3

106	Optimization of Long-Run Average-Flow Cost in Networks With Time-Varying Unknown Demand. <i>IEEE Transactions on Automatic Control</i> , 2010 , 55, 20-31	5.9	15
105	Switched control of fluid networks. <i>Transactions of the Institute of Measurement and Control</i> , 2010 , 32, 582-602	1.8	5
104	Dynamic optimization algorithms to mitigate HIV escape 2010 ,		5
103	. IEEE Transactions on Automatic Control, 2010 , 55, 2271-2281	5.9	40
102	A decentralized solution for the constrained minimum cost flow 2010 ,		2
101	Vertex/plane characterization of the dwell-time property for switching linear systems 2010,		10
100	Continuous-time optimal control for switched positive systems with application to mitigating viral escape*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 266-271		5
99	Average Flow Constraints and Stabilizability in Uncertain Production-Distribution Systems. <i>Journal of Optimization Theory and Applications</i> , 2010 , 144, 12-28	1.6	3
98	Non-conservative matrix inequality conditions for stability/stabilizability of linear differential inclusions. <i>Automatica</i> , 2010 , 46, 190-196	5.7	51
97	Modal and transition dwell time computation in switching systems: A set-theoretic approach. <i>Automatica</i> , 2010 , 46, 1477-1482	5.7	27
96	Natural frequency intervals for vibrating systems with polytopic uncertainty. <i>Journal of Sound and Vibration</i> , 2010 , 329, 944-959	3.9	3
95	A convex optimization approach to synthesizing bounded complexity lifilters 2009,		1
94	Modal and transition dwell time computation in switching systems: a set-theoretic approach 2009,		1
93	High-Gain Adaptive Control: A Derivative-Based Approach. <i>IEEE Transactions on Automatic Control</i> , 2009 , 54, 2164-2169	5.9	7
92	A Separation Principle for Linear Switching Systems and Parametrization of All Stabilizing Controllers. <i>IEEE Transactions on Automatic Control</i> , 2009 , 54, 279-292	5.9	81
91	High-gain adaptive control: A derivative-based approach 2008,		1
90	Set-Theoretic Methods in Control. Systems and Control: Foundations and Applications, 2008,	0.3	447
89	. IEEE Transactions on Control Systems Technology, 2008 , 16, 1066-1074	4.8	10

(2006-2008)

88	A separation principle for linear switching systems and parametrization of all stabilizing controllers 2008 ,		3
87	Polyhedral functions, composite quadratic functions, and equivalent conditions for stability/stabilization 2008,		2
86	A Mixed Convex/Nonconvex Distributed Localization Approach for the Deployment of Indoor Positioning Services. <i>IEEE Transactions on Mobile Computing</i> , 2008 , 7, 1325-1337	4.6	11
85	Dynamic augmentation and complexity reduction of set-based constrained control. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 14324-14329		2
84	Simultaneous performance achievement via compensator blending. <i>Automatica</i> , 2008 , 44, 1-14	5.7	9
83	Stabilizability of switched linear systems does not imply the existence of convex Lyapunov functions. <i>Automatica</i> , 2008 , 44, 1166-1170	5.7	59
82	Stability results for linear parameter varying and switching systems. <i>Automatica</i> , 2007 , 43, 1817-1823	5.7	41
81	A minimum-time control strategy for torque tracking in permanent magnet AC motor drives. <i>Automatica</i> , 2007 , 43, 505-512	5.7	3
80	Robust obstacle avoidance for constrained linear discrete time systems: A set-theoretic approach 2007 ,		9
79	Relatively Optimal Control: A Static Piecewise-Affine Solution. <i>SIAM Journal on Control and Optimization</i> , 2007 , 46, 585-603	1.9	6
78	Extensive study on the control of centrifugal compressor surge. <i>Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,</i> 2006 , 220, 289-304	1.6	23
77	Relatively optimal control with characteristic polynomial assignment and output feedback. <i>IEEE Transactions on Automatic Control</i> , 2006 , 51, 183-191	5.9	7
76	Controlling systems via set-theoretic methods: some perspectives 2006 ,		1
75	Stabilizability of switched linear systems does not imply the existence of convex Lyapunov functions 2006 ,		9
74	Relatively Optimal Control for Continuous-Time Systems 2006,		3
73	Robust Control Strategies for Multilhventory Systems with Average Flow Constraints 2006 , 77-82		1
72	ROBUST CONTROL STRATEGIES FOR MULTI I NVENTORY SYSTEMS WITH AVERAGE FLOW CONSTRAINTS. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2006 , 39, 77-82		
71	Robust control strategies for multilihventory systems with average flow constraints. <i>Automatica</i> , 2006 , 42, 1255-1266	5.7	28

70	RELATIVELY OPTIMAL CONTROL: THE STATIC SOLUTION. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2005 , 38, 676-681		4
69	A MINIMUM-TIME CONTROL STRATEGY FOR TORQUE TRACKING IN PERMANENT MAGNET AC MOTOR DRIVES. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2005 , 38, 682-687		
68	STABILITY RESULTS FOR CONTINUOUS AND DISCRETE TIME LINEAR PARAMETER VARYING SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 227-232	<u>!</u>	
67	Constrained HIDesign of PID Controllers 2005 , 297-305		
66	Control of manipulators in a constrained workspace by means of linked invariant sets. <i>International Journal of Robust and Nonlinear Control</i> , 2004 , 14, 1185-1205	3.6	23
65	Guaranteed cost control for multi-inventory systems with uncertain demand. <i>Automatica</i> , 2004 , 40, 213	- 3 2/3	10
64	Characterization of PID and lead/lag compensators satisfying given H/sub /spl infin// specifications. <i>IEEE Transactions on Automatic Control</i> , 2004 , 49, 736-740	5.9	43
63	Polyhedral lyapunov functions computation for robust and gain scheduled design. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2004 , 37, 835-840		1
62	Effective Information for Offline Stochastic Feedback and Optimal Control of Dynamic Systems. Journal of Optimization Theory and Applications, 2003 , 116, 283-310	1.6	5
61	Stabilization of multi-inventory systems with uncertain demand and setups. <i>IEEE Transactions on Automation Science and Engineering</i> , 2003 , 19, 103-116		5
60	Suboptimal receding horizon control for continuous-time systems. <i>IEEE Transactions on Automatic Control</i> , 2003 , 48, 1081-1086	5.9	5
59	Relatively optimal control and its linear implementation. <i>IEEE Transactions on Automatic Control</i> , 2003 , 48, 2151-2162	5.9	17
58	Stabilization of LPV Systems: State Feedback, State Estimation, and Duality. <i>SIAM Journal on Control and Optimization</i> , 2003 , 42, 76-97	1.9	58
57	Adaptive control of compressor surge instability. <i>Automatica</i> , 2002 , 38, 1373-1380	5.7	27
56	Experimental Evaluation of a High-Gain Control for Compressor Surge Suppression. <i>Journal of Turbomachinery</i> , 2002 , 124, 27-35	1.8	11
55	GUARANTEED COST CONTROL FOR MULTI-INVENTORY SYSTEMS WITH UNCERTAIN DEMAND. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2002 , 35, 13-18		
54	Robust rate control for integrated services packet networks. <i>IEEE/ACM Transactions on Networking</i> , 2002 , 10, 644-652	3.8	42
53	Min-max control of uncertain multi-inventory systems with multiplicative uncertainties. <i>IEEE Transactions on Automatic Control</i> , 2001 , 45, 955-960	5.9	11

52	Robust control of production-distribution systems 2001 , 13-28		1
51	Any Domain of Attraction for a Linear Constrained System is a Tracking Domain of Attraction. <i>SIAM Journal on Control and Optimization</i> , 2000 , 38, 971-994	1.9	43
50	Control of production-distribution systems with unknown inputs and system failures. <i>IEEE Transactions on Automatic Control</i> , 2000 , 45, 1072-1081	5.9	43
49	Feedback control of production-distribution systems with unknown demand and delays. <i>IEEE Transactions on Automation Science and Engineering</i> , 2000 , 16, 313-317		25
48	. IEEE Transactions on Automatic Control, 2000 , 45, 2061-2070	5.9	58
47	A convex optimization approach to fixed-order controller design for disturbance rejection in SISO systems. <i>IEEE Transactions on Automatic Control</i> , 2000 , 45, 784-789	5.9	19
46	Dynamic programming for robust control: Old ideas and recent developments 1999 , 391-407		
45	Set invariance in control. <i>Automatica</i> , 1999 , 35, 1747-1767	5.7	1364
44	A Razumikhin-type lemma for functional differential equations with application to adaptive control. <i>Automatica</i> , 1999 , 35, 809-818	5.7	19
43	Discussion on: (A, B)-Invariance Conditions of Polyhedral Domains for Continuous-Time Systems by C.E.T. Diea and JC. Hennet. <i>European Journal of Control</i> , 1999 , 5, 82-86	2.5	6
42	A new class of universal Lyapunov functions for the control of uncertain linear systems. <i>IEEE Transactions on Automatic Control</i> , 1999 , 44, 641-647	5.9	78
41	Robust state feedback control of LTV systems: nonlinear is better than linear. <i>IEEE Transactions on Automatic Control</i> , 1999 , 44, 802-807	5.9	24
40	Numerical computation of polyhedral lyapunov functions for robust synthesis. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 1999 , 32, 2065-2070		
39	Constrained stabilization via smooth Lyapunov functions. Systems and Control Letters, 1998, 35, 155-10	63 _{2.4}	26
38	Computation of the minimum destabilizing volume for interval and affine families of polynomials. <i>IEEE Transactions on Automatic Control</i> , 1998 , 43, 1159-1163	5.9	7
37	Least inventory control of multistorage systems with non-stochastic unknown inputs. <i>IEEE Transactions on Automation Science and Engineering</i> , 1997 , 13, 633-645		34
36	Nonlinear controllers for the constrained stabilization of uncertain dynamic systems 1997 , 97-117		О
35	A Network Design Problem for a Distribution System with Uncertain Demands. <i>SIAM Journal on Optimization</i> , 1997 , 7, 560-578	2	32

34	Robust performance with fixed and worst-case signals for uncertain time-varying systems. <i>Automatica</i> , 1997 , 33, 2183-2189	5.7	20
33	Piecewise-linear functions in robust control 1996 , 213-243		5
32	A feedback strategy for periodic network flows. <i>Networks</i> , 1996 , 27, 25-34	1.6	4
31	A dynamic game model for distribution problems with non-stochastic uncertainty. <i>International Journal of Production Economics</i> , 1996 , 45, 479-487	9.3	3
30	Constrained stabilization of continuous-time linear systems. Systems and Control Letters, 1996 , 28, 95-1	0 2 .4	42
29	On the transient estimate for linear systems with time-varying uncertain parameters. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 1996 , 43, 592-596		27
28	A feedback strategy for periodic network flows 1996 , 27, 25		1
27	Robust control of constrained systems via convex optimization. <i>International Journal of Robust and Nonlinear Control</i> , 1995 , 5, 441-460	3.6	2
26	. IEEE Transactions on Automatic Control, 1995 , 40, 552-557	5.9	6
25	Constrained stabilization with an assigned initial condition set. <i>International Journal of Control</i> , 1995 , 62, 601-617	1.5	27
24	. IEEE Transactions on Automatic Control, 1995 , 40, 1127-1131	5.9	43
23	Nonquadratic Lyapunov functions for robust control. <i>Automatica</i> , 1995 , 31, 451-461	5.7	259
22	. IEEE Transactions on Automatic Control, 1994 , 39, 1487-1492	5.9	26
21	. IEEE Transactions on Automatic Control, 1994 , 39, 428-433	5.9	268
20	Constrained Control for Systems with Unknown Disturbances. Control and Dynamic Systems, 1992, 129-	182	9
19	POLYHEDRAL SET CONSTRAINED CONTROL FOR DISCRETE-TIME SYSTEMS WITH UNKNOWN ADDITIVE DISTURBANCES 1992 , 95-100		
18	Constrained control for uncertain linear systems. <i>Journal of Optimization Theory and Applications</i> , 1991 , 71, 465-484	1.6	59
17	Polyhedral Set Constrained Control for Discrete-Time Systems with Unknown Additive Disturbances. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 1991 , 24, 95-	100	1

LIST OF PUBLICATIONS

16	Control synthesis for discrete time systems with control and state bounds in the presence of disturbances. <i>Journal of Optimization Theory and Applications</i> , 1990 , 65, 29-40	1.6	34
15	Controllability analysis and eigenvalue assignment for generalized state-space systems. <i>Systems and Control Letters</i> , 1990 , 15, 285-293	2.4	3
14	Computation of the transfer function for singular systems. <i>International Journal of Systems Science</i> , 1990 , 21, 407-414	2.3	2
13	1990,		11
12	. IEEE Transactions on Automatic Control, 1990 , 35, 1231-1234	5.9	104
11	Matrix bidiagonal form. <i>International Journal of Control</i> , 1989 , 50, 699-705	1.5	1
10	New canonical form for pole placement. <i>IEE Proceedings D: Control Theory and Applications</i> , 1989 , 136, 314		7
9	Suboptimal receding horizon control for continuous-time systems		2
8	Feedback control of production-distribution systems with unknown demand and delays		1
7	Control of production-distribution systems with unknown inputs and system failures		1
6	The gain scheduling and the robust state feedback stabilization problems		2
5	A new class of universal Lyapunov functions for the control of uncertain linear systems		10
4			24
3			18
2	Worst case l/sup /spl infin// to l/sup /spl infin// gain minimization: dynamic versus static state feedback		6
1	An improved safety device for electric chainsaws. Contemporary Engineering Sciences,8, 1229-1244	0.8	3