Thomas Bell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4363082/publications.pdf Version: 2024-02-01

THOMAS RELL

#	Article	IF	CITATIONS
1	An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	551
2	Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide. Atmospheric Chemistry and Physics, 2013, 13, 8915-8934.	1.9	131
3	The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview. Frontiers in Marine Science, 2019, 6, .	1.2	111
4	Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei. Scientific Reports, 2018, 8, 3235.	1.6	103
5	Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations. Global Biogeochemical Cycles, 2015, 29, 1165-1178.	1.9	96
6	Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on largeâ€scale field sampling: Iron and other dustâ€associated elements. Global Biogeochemical Cycles, 2013, 27, 755-767.	1.9	88
7	Air–sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmospheric Chemistry and Physics, 2013, 13, 11073-11087.	1.9	84
8	Field observations of the oceanâ€atmosphere exchange of ammonia: Fundamental importance of temperature as revealed by a comparison of high and low latitudes. Global Biogeochemical Cycles, 2008, 22, .	1.9	83
9	Transcriptome analysis of the sulfate deficiency response in the marine microalga <i>Emiliania huxleyi</i> . New Phytologist, 2013, 199, 650-662.	3.5	71
10	Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO ₂ transfer velocities at intermediate–high wind speeds. Atmospheric Chemistry and Physics, 2017, 17, 9019-9033.	1.9	54
11	MEMENTO: a proposal to develop a database of marine nitrous oxide and methane measurements. Environmental Chemistry, 2009, 6, 195.	0.7	53
12	Can we trust empirical marine DMS parameterisations within projections of future climate?. Biogeosciences, 2010, 7, 1645-1656.	1.3	52
13	Dimethylsulfide gas transfer coefficients from algal blooms in the Southern Ocean. Atmospheric Chemistry and Physics, 2015, 15, 1783-1794.	1.9	47
14	Identification of senescence and death in <i>Emiliania huxleyi</i> and <i>Thalassiosira pseudonana</i> : Cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnology and Oceanography, 2012, 57, 305-317.	1.6	46
15	Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere. Scientific Reports, 2016, 6, 36031.	1.6	40
16	Ammonia/ammonium dissociation coefficient in seawater: A significant numerical correction. Environmental Chemistry, 2007, 4, 183.	0.7	36
17	Parameterizing airâ€sea gas transfer velocity with dissipation. Journal of Geophysical Research: Oceans, 2017, 122, 3041-3056.	1.0	36
18	Seasonal Differences and Variability of Concentrations, Chemical Composition, and Cloud Condensation Nuclei of Marine Aerosol Over the North Atlantic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033145.	1.2	36

THOMAS BELL

#	Article	IF	CITATIONS
19	Coupling between dimethylsulfide emissions and the ocean - atmosphere exchange of ammonia. Environmental Chemistry, 2008, 5, 259.	0.7	35
20	Exploiting satellite earth observation to quantify current global oceanic DMS flux and its future climate sensitivity. Journal of Geophysical Research: Oceans, 2014, 119, 7725-7740.	1.0	33
21	Flux of the biogenic volatiles isoprene and dimethyl sulfide from an oligotrophic lake. Scientific Reports, 2018, 8, 630.	1.6	32
22	Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network. Biogeosciences, 2020, 17, 5335-5354.	1.3	30
23	Seasonal Variations in Western North Atlantic Remote Marine Aerosol Properties. Journal of Geophysical Research D: Atmospheres, 2019, 124, 14240-14261.	1.2	29
24	Third revision of the global surface seawater dimethyl sulfide climatology (DMS-Rev3). Earth System Science Data, 2022, 14, 2963-2987.	3.7	28
25	Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions. Atmospheric Chemistry and Physics, 2016, 16, 4771-4783.	1.9	27
26	A comparison of dimethylsulphide (DMS) data from the Atlantic Meridional Transect (AMT) programme with proposed algorithms for global surface DMS concentrations. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1720-1735.	0.6	25
27	Overview and preliminary results of the Surface Ocean Aerosol Production (SOAP) campaign. Atmospheric Chemistry and Physics, 2017, 17, 13645-13667.	1.9	25
28	Global sea-surface iodide observations, 1967–2018. Scientific Data, 2019, 6, 286.	2.4	25
29	Technical Note: Ensuring consistent, global measurements of very short-lived halocarbon gases in the ocean and atmosphere. Atmospheric Chemistry and Physics, 2010, 10, 327-330.	1.9	22
30	Air–sea fluxes of CO ₂ and CH ₄ from the Penlee Point Atmospheric Observatory on the south-west coast of the UK. Atmospheric Chemistry and Physics, 2016, 16, 5745-5761.	1.9	22
31	Strong linkages between dimethylsulphoniopropionate (DMSP) and phytoplankton community physiology in a large subtropical and tropical Atlantic Ocean data set. Global Biogeochemical Cycles, 2010, 24, .	1.9	21
32	Global oceanic DMS data inter-comparability. Biogeochemistry, 2012, 110, 147-161.	1.7	21
33	Testing the relationship between the solar radiation dose and surface DMS concentrations using in situ data. Biogeosciences, 2009, 6, 1927-1934.	1.3	20
34	Comparison of two closed-path cavity-based spectrometers for measuring air–water CO ₂ and CH ₄ fluxes by eddy covariance. Atmospheric Measurement Techniques, 2016, 9, 5509-5522.	1.2	20
35	Uncertainties in eddy covariance air–sea CO ₂ flux measurements and implications for gas transfer velocity parameterisations. Atmospheric Chemistry and Physics, 2021, 21, 8089-8110.	1.9	20
36	Seasonal and geographical variability of nitryl chloride and its precursors in Northern Europe. Atmospheric Science Letters, 2018, 19, e844.	0.8	19

THOMAS BELL

#	Article	IF	CITATIONS
37	Assessing the potential for dimethylsulfide enrichment at the sea surface and its influence on air–sea flux. Ocean Science, 2016, 12, 1033-1048.	1.3	18
38	Characterizing the Particle Composition and Cloud Condensation Nuclei from Shipping Emission in Western Europe. Environmental Science & amp; Technology, 2020, 54, 15604-15612.	4.6	18
39	Insights from year-long measurements of air–water CH ₄ and CO ₂ exchange in a coastal environment. Biogeosciences, 2019, 16, 961-978.	1.3	17
40	Using eddy covariance to measure the dependence of air–sea CO ₂ exchange rate on friction velocity. Atmospheric Chemistry and Physics, 2018, 18, 4297-4315.	1.9	15
41	Sea spray fluxes from the southwest coast of the United Kingdom – dependence on wind speed and wave height. Atmospheric Chemistry and Physics, 2019, 19, 15271-15284.	1.9	15
42	Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART. Atmospheric Chemistry and Physics, 2021, 21, 831-851.	1.9	15
43	Gradient flux measurements of sea–air DMS transfer during the Surface Ocean Aerosol Production (SOAP) experiment. Atmospheric Chemistry and Physics, 2018, 18, 5861-5877.	1.9	14
44	Methanethiol, dimethyl sulfide and acetone over biologically productive waters in the southwest Pacific Ocean. Atmospheric Chemistry and Physics, 2020, 20, 3061-3078.	1.9	14
45	Natural variability in air–sea gas transfer efficiency of CO2. Scientific Reports, 2021, 11, 13584.	1.6	14
46	Near‧urface Stratification Due to Ice Melt Biases Arctic Air‧ea CO ₂ Flux Estimates. Geophysical Research Letters, 2021, 48, e2021GL095266.	1.5	14
47	Surface ocean-lower atmosphere study: Scientific synthesis and contribution to Earth system science. Anthropocene, 2015, 12, 54-68.	1.6	13
48	Corrigendum to: Ammonia/ammonium dissociation coefficient in seawater: A significant numerical correction. Environmental Chemistry, 2008, 5, 258.	0.7	13
49	An interlaboratory comparison for the quantification of aqueous dimethylsulfide. Limnology and Oceanography: Methods, 2014, 12, 784-794.	1.0	12
50	Dissolved organic matter release by an axenic culture of Emiliania huxleyi. Journal of the Marine Biological Association of the United Kingdom, 2008, 88, 1343-1346.	0.4	11
51	Predictability of Seawater DMS During the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES). Frontiers in Marine Science, 2021, 7, .	1.2	11
52	Spatial variability in DMSP-lyase activity along an Atlantic meridional transect. Aquatic Sciences, 2007, 69, 320-329.	0.6	10
53	Investigating the inter-relationships between water attenuated irradiance, primary production and DMS(P). Biogeochemistry, 2012, 110, 201-213.	1.7	9
54	Air-sea transfer of gas phase controlled compounds. IOP Conference Series: Earth and Environmental Science, 2016, 35, 012011.	0.2	9

THOMAS BELL

#	Article	IF	CITATIONS
55	A measurement system for vertical seawater profiles close to the air–sea interface. Ocean Science, 2017, 13, 649-660.	1.3	9
56	Global Synthesis of Air-Sea CO2 Transfer Velocity Estimates From Ship-Based Eddy Covariance Measurements. Frontiers in Marine Science, 0, 9, .	1.2	9
57	Development and validation of a shipboard system for measuring high-resolution vertical profiles of aqueous dimethylsulfide concentrations using chemical ionisation mass spectrometry. Environmental Chemistry, 2014, 11, 309.	0.7	8
58	Ozone deposition to a coastal sea: comparison of eddy covariance observations with reactive air–sea exchange models. Atmospheric Measurement Techniques, 2020, 13, 6915-6931.	1.2	7
59	Impact of sea ice on air-sea CO2 exchange – A critical review of polar eddy covariance studies. Progress in Oceanography, 2022, 201, 102741.	1.5	7
60	Air–sea exchange of acetone, acetaldehyde, DMS and isoprene at a UK coastal site. Atmospheric Chemistry and Physics, 2021, 21, 10111-10132.	1.9	5
61	Tidal mixing of estuarine and coastal waters in the western English Channel is a control on spatial and temporal variability in seawater CO ₂ . Biogeosciences, 2022, 19, 1657-1674.	1.3	5
62	Characterization of Sea Surface Microlayer and Marine Aerosol Organic Composition Using STXM-NEXAFS Microscopy and FTIR Spectroscopy. ACS Earth and Space Chemistry, 2022, 6, 1899-1913.	1.2	5
63	Automated, high frequency, on-line dimethyl sulfide measurements in natural waters using a novel "microslug―gas-liquid segmented flow method with chemiluminescence detection. Talanta, 2021, 221, 121595.	2.9	4
64	North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories. Atmospheric Chemistry and Physics, 2022, 22, 2795-2815.	1.9	4
65	The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation. IOP Conference Series: Earth and Environmental Science, 2016, 35, 012005.	0.2	2
66	Perspectives and Integration in SOLAS Science. Springer Earth System Sciences, 2014, , 247-306.	0.1	2
67	Inorganic nitrogen and phosphorus in Western European aerosol and the significance of dry deposition flux into stratified shelf waters. Atmospheric Environment, 2021, 261, 118391.	1.9	1

Atmospheric Emissions from Ships. , 2020, , 11-55.

0