Ahmed Kamal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4362368/publications.pdf

Version: 2024-02-01

345 papers 10,875 citations

51 h-index 70 g-index

354 all docs

354 docs citations

354 times ranked

10173 citing authors

#	Article	IF	Citations
1	Design, synthesis and biological evaluation of 1,3-diphenyl-1 H -pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. European Journal of Medicinal Chemistry, 2015, 101, 790-805.	2.6	156
2	Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing â€~click' chemistry: DNA-binding affinity and anticancer activity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1468-1473.	1.0	145
3	Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. European Journal of Medicinal Chemistry, 2011, 46, 691-703.	2.6	145
4	Design, synthesis and biological evaluation of imidazopyridine/pyrimidine-chalcone derivatives as potential anticancer agents. MedChemComm, 2010, 1, 355.	3.5	132
5	Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1,2,3-triazole ring side-armed with alkane spacers. European Journal of Medicinal Chemistry, 2011, 46, 3820-3831.	2.6	124
6	Synthesis of 3,3-diindolyl oxyindoles efficiently catalysed by FeCl3 and their in vitro evaluation for anticancer activity. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5229-5231.	1.0	116
7	Spirooxindole-derived morpholine-fused-1,2,3-triazoles: Design, synthesis, cytotoxicity and apoptosis inducing studies. European Journal of Medicinal Chemistry, 2015, 102, 413-424.	2.6	107
8	Naphthalimide derivatives with therapeutic characteristics: a patent review. Expert Opinion on Therapeutic Patents, 2013, 23, 299-317.	2.4	103
9	Synthesis, DNA-binding ability and anticancer activity of benzothiazole/benzoxazole–pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorganic and Medicinal Chemistry, 2010, 18, 4747-4761.	1.4	101
10	Water mediated Heck and Ullmann couplings by supported palladium nanoparticles: importance of surface polarity of the carbon spheres. Green Chemistry, 2012, 14, 2513.	4.6	91
11	Design, Synthesis, and Evaluation of New Noncross-Linking Pyrrolobenzodiazepine Dimers with Efficient DNA Binding Ability and Potent Antitumor Activity. Journal of Medicinal Chemistry, 2002, 45, 4679-4688.	2.9	89
12	Therapeutic potential of benzothiazoles: a patent review (2010 $\hat{a} \in 2014$). Expert Opinion on Therapeutic Patents, 2015, 25, 335-349.	2.4	89
13	Glycogen synthase kinase-3 and its inhibitors: Potential target for various therapeutic conditions. European Journal of Medicinal Chemistry, 2018, 144, 843-858.	2.6	88
14	Design and synthesis of pyrazole–oxindole conjugates targeting tubulin polymerization as new anticancer agents. European Journal of Medicinal Chemistry, 2015, 92, 501-513.	2.6	86
15	DNA-binding affinity and anticancer activity of β-carboline–chalcone conjugates as potential DNA intercalators: Molecular modelling and synthesis. Bioorganic Chemistry, 2015, 59, 130-139.	2.0	83
16	Chemoenzymatic Synthesis of Pyrrolo[2,1-b]quinazolinones: Lipase-Catalyzed Resolution of Vasicinoneâ€. Journal of Organic Chemistry, 2001, 66, 997-1001.	1.7	82
17	Recent Developments in the Design, Synthesis and Structure-Activity Relationship Studies of Pyrrolo[2,1-c][1,4]benzodiazepines as DNA-Interactive Antitumour Antibiotics. Anti-Cancer Agents in Medicinal Chemistry, 2002, 2, 215-254.	7.0	82
18	Synthesis of a new class of 2-anilino substituted nicotinyl arylsulfonylhydrazides as potential anticancer and antibacterial agents. Bioorganic and Medicinal Chemistry, 2007, 15, 1004-1013.	1.4	82

#	Article	IF	Citations
19	Synthesis and anticancer activity of oxindole derived imidazo[1,5-a]pyrazines. European Journal of Medicinal Chemistry, 2011, 46, 2427-2435.	2.6	81
20	Synthesis of pyrazolo[1,5-a]pyrimidine linked aminobenzothiazole conjugates as potential anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3208-3215.	1.0	81
21	Design and synthesis of dithiocarbamate linked \hat{l}^2 -carboline derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability. Bioorganic and Medicinal Chemistry, 2015, 23, 5511-5526.	1.4	79
22	An efficient synthesis of bis(indolyl)methanes and evaluation of their antimicrobial activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 559-565.	2.5	78
23	Design and synthesis of C3-tethered 1,2,3-triazolo- \hat{l}^2 -carboline derivatives: Anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorganic Chemistry, 2016, 64, 42-50.	2.0	77
24	Synthesis and biological evaluation of pyrazolo–triazole hybrids as cytotoxic and apoptosis inducing agents. Organic and Biomolecular Chemistry, 2015, 13, 10136-10149.	1.5	75
25	Quinazolinone linked pyrrolo[2,1-c][1,4]benzodiazepine (PBD) conjugates: Design, synthesis and biological evaluation as potential anticancer agents. Bioorganic and Medicinal Chemistry, 2010, 18, 526-542.	1.4	74
26	2-Anilinonicotinyl linked 1,3,4-oxadiazole derivatives: Synthesis, antitumour activity and inhibition of tubulin polymerization. MedChemComm, 2011, 2, 819.	3.5	74
27	Solid-phase synthesis of new pyrrolobenzodiazepine–chalcone conjugates: DNA-binding affinity and anticancer activity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2434-2439.	1.0	72
28	Design and Synthesis of C3â€Pyrazole/Chalconeâ€Linked Betaâ€Carboline Hybrids: Antitopoisomeraseâ€l, DNAâ€Interactive, and Apoptosisâ€Inducing Anticancer Agents. ChemMedChem, 2014, 9, 2084-2098.	1.6	72
29	Copper Oxide Nanoparticles Supported on Graphene Oxide―Catalyzed Sâ€Arylation: An Efficient and Ligandâ€Free Synthesis of Aryl Sulfides. Advanced Synthesis and Catalysis, 2013, 355, 2297-2307.	2.1	69
30	Design, synthesis and biological evaluation of 3,5-diaryl-isoxazoline/isoxazole-pyrrolobenzodiazepine conjugates as potential anticancer agents. European Journal of Medicinal Chemistry, 2010, 45, 3924-3937.	2.6	68
31	Microwave enhanced reduction of nitro and azido arenes to N-arylformamides employing Zn–HCOONH4: synthesis of 4(3H)-quinazolinones and pyrrolo[2,1-c][1,4]benzodiazepines. Tetrahedron Letters, 2004, 45, 6517-6521.	0.7	66
32	One-Pot, Three-Component Approach to the Synthesis of 3,4,5-Trisubstituted Pyrazoles. Journal of Organic Chemistry, 2015, 80, 4325-4335.	1.7	66
33	Recent Advances in the Solid-Phase Combinatorial Synthetic Strategies for the Quinoxaline, Quinazoline and Benzimidazole Based Privileged Structures. Mini-Reviews in Medicinal Chemistry, 2006, 6, 71-89.	1.1	65
34	Regioselective synthesis, antimicrobial evaluation and theoretical studies of 2-styryl quinolines. Organic and Biomolecular Chemistry, 2015, 13, 1347-1357.	1.5	65
35	Pyrazolo-benzothiazole hybrids: Synthesis, anticancer properties and evaluation of antiangiogenic activity using inÂvitro VEGFR-2 kinase and inÂvivo transgenic zebrafish model. European Journal of Medicinal Chemistry, 2019, 182, 111609.	2.6	65
36	Synthesis and anti-cancer activity of chalcone linked imidazolones. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4865-4869.	1.0	64

3

#	Article	IF	Citations
37	Synthesis and biological evaluation of curcumin inspired indole analogues as tubulin polymerization inhibitors. European Journal of Medicinal Chemistry, 2017, 127, 100-114.	2.6	63
38	Recent advances in combretastatin based derivatives and prodrugs as antimitotic agents. MedChemComm, 2017, 8, 1592-1603.	3.5	63
39	H2O-mediated isatin spiro-epoxide ring opening with NaCN: Synthesis of novel 3-tetrazolylmethyl-3-hydroxy-oxindole hybrids and their anticancer evaluation. European Journal of Medicinal Chemistry, 2015, 104, 11-24.	2.6	61
40	Synthesis of a new 4-aza-2,3-didehydropodophyllotoxin analogues as potent cytotoxic and antimitotic agents. Bioorganic and Medicinal Chemistry, 2011, 19, 2349-2358.	1.4	59
41	Synthesis and biological evaluation of spiro[cyclopropane-1,3′-indolin]-2′-ones as potential anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4580-4586.	1.0	59
42	VOSO 4 catalyzed highly efficient synthesis of benzimidazoles, benzothiazoles, and quinoxalines. Tetrahedron Letters, 2016, 57, 4012-4016.	0.7	57
43	Recent Advances in the Solid-Phase Combinatorial Synthetic Strategies for the Benzodiazepine Based Privileged Structures. Mini-Reviews in Medicinal Chemistry, 2006, 6, 53-69.	1.1	56
44	Synthesis and apoptosis inducing ability of new anilino substituted pyrimidine sulfonamides as potential anticancer agents. European Journal of Medicinal Chemistry, 2011, 46, 5817-5824.	2.6	56
45	Design and synthesis of benzo[c,d]indolone-pyrrolobenzodiazepine conjugates as potential anticancer agents. Bioorganic and Medicinal Chemistry, 2012, 20, 789-800.	1.4	56
46	Design and synthesis of C-8 linked pyrrolobenzodiazepine–naphthalimide hybrids as anti-tumour agents. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1933-1935.	1.0	55
47	Podophyllotoxin derivatives: a patent review (2012 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 1025-1034.	2.4	55
48	Synthesis of podophyllotoxin linked \hat{l}^2 -carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. European Journal of Medicinal Chemistry, 2018, 144, 557-571.	2.6	55
49	Synthesis and anticancer activity of $4\hat{l}^2$ -alkylamidochalcone and $4\hat{l}^2$ -cinnamido linked podophyllotoxins as apoptotic inducing agents. European Journal of Medicinal Chemistry, 2012, 47, 530-545.	2.6	54
50	Chemoselective Aromatic Azido Reduction with Concomitant Aliphatic Azide Employing Al/Gd Triflates/Nal and ESIâ€MS Mechanistic Studies. Chemistry - A European Journal, 2009, 15, 7215-7224.	1.7	53
51	Synthesis of Imidazothiazole–Chalcone Derivatives as Anticancer and Apoptosis Inducing Agents. ChemMedChem, 2010, 5, 1937-1947.	1.6	53
52	Design, synthesis and biological evaluation of N -((1-benzyl-1 H -1,2,3-triazol-4-yl)methyl)-1,3-diphenyl-1 H -pyrazole-4-carboxamides as CDK1/Cdc2 inhibitors. European Journal of Medicinal Chemistry, 2016, 122, 164-177.	2.6	52
53	Synthesis of $4\hat{l}^2$ -amido and $4\hat{l}^2$ -sulphonamido analogues of podophyllotoxin as potential antitumour agents. Bioorganic and Medicinal Chemistry, 2003, 11, 5135-5142.	1.4	51
54	Synthesis of β-carboline–benzimidazole conjugates using lanthanum nitrate as a catalyst and their biological evaluation. Organic and Biomolecular Chemistry, 2014, 12, 2370-2387.	1.5	51

#	Article	IF	Citations
55	Synthesis and biological evaluation of cis -restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers. Bioorganic and Medicinal Chemistry, 2017, 25, 977-999.	1.4	51
56	Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC Medicinal Chemistry, 2020, 11, 327-348.	1.7	51
57	$4\hat{l}^2$ -amidotriazole linked podophyllotoxin congeners: DNA topoisomerase-IIÎ \pm inhibition and potential anticancer agents for prostate cancer. European Journal of Medicinal Chemistry, 2018, 144, 595-611.	2.6	50
58	Î ² -Carbolines as potential anticancer agents. European Journal of Medicinal Chemistry, 2021, 216, 113321.	2.6	50
59	Remarkable DNA binding affinity and potential anticancer activity of pyrrolo[2,1-c][1,4]benzodiazepine–naphthalimide conjugates linked through piperazine side-armed alkane spacers. Bioorganic and Medicinal Chemistry, 2008, 16, 7218-7224.	1.4	48
60	Design and synthesis of imidazo [2,1-b]thiazole linked triazole conjugates: Microtubule-destabilizing agents. European Journal of Medicinal Chemistry, 2017, 126, 36-51.	2.6	48
61	Synthesis of (Z)-1-(1,3-diphenyl-1 H -pyrazol-4-yl)-3-(phenylamino)prop-2-en-1-one derivatives as potential anticancer and apoptosis inducing agents. European Journal of Medicinal Chemistry, 2016, 117, 157-166.	2.6	47
62	Combretastatin linked 1,3,4-oxadiazole conjugates as a Potent Tubulin Polymerization inhibitors. Bioorganic Chemistry, 2016, 65, 126-136.	2.0	47
63	TBAI/TBHP-catalyzed [3 + 2]cycloaddition/oxidation/aromatization cascade and online ESI-MS mechanistic studies: synthesis of pyrrolo[2,1- <i>a</i>) isoquinolines and indolizino[8,7- <i>b</i>) indoles. RSC Advances, 2016, 6, 2671-2677.	1.7	47
64	Synthesis of benzo [d]imidazo [2,1-b]thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents. Bioorganic Chemistry, 2018, 76, 1-12.	2.0	47
65	Synthesis of C8-linked pyrrolo[2,1-c][1,4]benzodiazepine-acridone/acridine hybrids as potential DNA-binding agents. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4107-4111.	1.0	46
66	Anti-tubercular agents. Part 3. Benzothiadiazine as a novel scaffold for anti-Mycobacterium activity. Bioorganic and Medicinal Chemistry, 2006, 14, 650-658.	1.4	46
67	Synthesis, DNA binding, and cytotoxicity studies of pyrrolo[2,1-c][1,4]benzodiazepine-anthraquinone conjugates. Bioorganic and Medicinal Chemistry, 2007, 15, 6868-6875.	1.4	46
68	A new facile chemoenzymatic synthesis of levamisole. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 613-615.	1.0	45
69	PhI(OAc) < sub > 2 < /sub > -mediated one-pot oxidative decarboxylation and aromatization of tetrahydro- \hat{l}^2 -carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I. Organic and Biomolecular Chemistry, 2015, 13, 8652-8662.	1.5	45
70	Design, synthesis and biological evaluation of imidazopyridine/imidazopyrimidine-benzimidazole conjugates as potential anticancer agents. MedChemComm, 2015, 6, 606-612.	3.5	45
71	Synthesis of new benzimidazole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates with efficient DNA-binding affinity and potent cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2594-2598.	1.0	44
72	Remarkable enhancement in the DNA-binding ability of C2-fluoro substituted pyrrolo[2,1-c][1,4]benzodiazepines and their anticancer potential. Bioorganic and Medicinal Chemistry, 2009, 17, 1557-1572.	1.4	44

#	Article	IF	Citations
73	Synthesis of chalcone-amidobenzothiazole conjugates as antimitotic and apoptotic inducing agents. Bioorganic and Medicinal Chemistry, 2012, 20, 3480-3492.	1.4	44
74	Design, synthesis and biological evaluation of new \hat{l}^2 -carboline-bisindole compounds as DNA binding, photocleavage agents and topoisomerase I inhibitors. European Journal of Medicinal Chemistry, 2018, 143, 1563-1577.	2.6	44
75	Solid-Phase Synthesis of a Library of Pyrrolo[2,1-c][1,4]benzodiazepine-5,11-diones with Potential Antitubercular Activity. ACS Combinatorial Science, 2007, 9, 29-42.	3.3	43
76	1,2,4-Benzothiadiazine linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates: Synthesis, DNA-binding affinity and cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5345-5348.	1.0	43
77	Synthesis of terphenyl benzimidazoles as tubulin polymerization inhibitors. European Journal of Medicinal Chemistry, 2012, 50, 9-17.	2.6	43
78	Synthesis, anticancer activity and apoptosis inducing ability of bisindole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 571-578.	1.0	43
79	Silver catalyzed domino aza-annulation/Diels–Alder cyclization of 2-ene-yne anilines: a facile one-pot access to carbazole, dihydrocarbazole and tetrahydrocarbazole frameworks. Chemical Communications, 2016, 52, 4581-4584.	2.2	43
80	Synthesis of 2,3,6,7-tetramethoxyphenanthren-9-amine: An efficient precursor to access new 4- aza -2,3-dihydropyridophenanthrenes as apoptosis inducing agents. European Journal of Medicinal Chemistry, 2017, 127, 305-317.	2.6	43
81	Antitubercular agents. Part 2: New thiolactomycin analogues active against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1927-1929.	1.0	42
82	Synthesis, DNA-binding ability and evaluation of antitumour activity of triazolo $[1,2,4]$ benzothiadiazine linked pyrrolo $[2,1-c][1,4]$ benzodiazepine conjugates. Bioorganic and Medicinal Chemistry, 2008, 16, 7804-7810.	1.4	42
83	Synthesis and biological evaluation of conformationally flexible as well as restricted dimers of monastrol and related dihydropyrimidones. European Journal of Medicinal Chemistry, 2011, 46, 3274-3281.	2.6	42
84	An efficient one-pot synthesis of benzothiazolo- $4\hat{l}^2$ -anilino-podophyllotoxin congeners: DNA topoisomerase-II inhibition and anticancer activity. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 350-353.	1.0	42
85	Synthesis of (Z)-(arylamino)-pyrazolyl/isoxazolyl-2-propenones as tubulin targeting anticancer agents and apoptotic inducers. Organic and Biomolecular Chemistry, 2015, 13, 3416-3431.	1.5	42
86	Copper-catalyzed three-component synthesis of aminonaphthoquinone–sulfonylamidine conjugates and in vitro evaluation of their antiproliferative activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2072-2076.	1.0	42
87	Synthesis and biological evaluation of pyrazole linked benzothiazole- \hat{I}^2 -naphthol derivatives as topoisomerase I inhibitors with DNA binding ability. Bioorganic and Medicinal Chemistry, 2019, 27, 708-720.	1.4	42
88	Design, synthesis and anticancer evaluation of tetrahydro-Î ² -carboline-hydantoin hybrids. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5413-5417.	1.0	41
89	Investigations Towards the Chemoselective Thioacetaliztion of Carbonyl Compounds by Using Ionic Liquid[bmim]Br as a Recyclable Catalytic Medium. Advanced Synthesis and Catalysis, 2004, 346, 579-582.	2.1	40
90	Synthesis and biological evaluation of podophyllotoxin congeners as tubulin polymerization inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 5466-5475.	1.4	40

#	Article	IF	Citations
91	Synthesis of arylpyrazole linked benzimidazole conjugates as potential microtubule disruptors. Bioorganic and Medicinal Chemistry, 2015, 23, 1082-1095.	1.4	40
92	Design, synthesis, in silico pharmacokinetics prediction and biological evaluation of 1,4-dihydroindeno[1,2-c]pyrazole chalcone as EGFR /Akt pathway inhibitors. European Journal of Medicinal Chemistry, 2019, 163, 636-648.	2.6	40
93	3â€Substituted 2â€Phenylimidazo[2,1â€∢i>b⟨li>]benzothiazoles: Synthesis, Anticancer Activity, and Inhibition of Tubulin Polymerization. ChemMedChem, 2012, 7, 292-300.	1.6	39
94	Anti-tubercular agents. Part 8: Synthesis, antibacterial and antitubercular activity of 5-nitrofuran based 1,2,3-triazoles. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6842-6846.	1.0	39
95	Synthesis of phenstatin/isocombretastatin–chalcone conjugates as potent tubulin polymerization inhibitors and mitochondrial apoptotic inducers. Organic and Biomolecular Chemistry, 2015, 13, 3963-3981.	1.5	39
96	An efficient one-pot decarboxylative aromatization of tetrahydro- \hat{l}^2 -carbolines by using N-chlorosuccinimide: total synthesis of norharmane, harmane and eudistomins. RSC Advances, 2015, 5, 90121-90126.	1.7	39
97	Synthesis and biological evaluation of curcumin inspired imidazo[1,2-a]pyridine analogues as tubulin polymerization inhibitors. European Journal of Medicinal Chemistry, 2018, 143, 216-231.	2.6	39
98	The design and development of imidazothiazole–chalcone derivatives as potential anticancer drugs. Expert Opinion on Drug Discovery, 2013, 8, 289-304.	2.5	38
99	Synthesis and biological evaluation of imidazo[1,5-a]pyridine-benzimidazole hybrids as inhibitors of both tubulin polymerization and PI3K/Akt pathway. Organic and Biomolecular Chemistry, 2014, 12, 9864-9880.	1.5	38
100	Pyrazole–oxadiazole conjugates: synthesis, antiproliferative activity and inhibition of tubulin polymerization. Organic and Biomolecular Chemistry, 2014, 12, 7993-8007.	1.5	38
101	Rapid Access to Novel 1,2,3-Triazolo-Heterocyclic Scaffolds via Tandem Knoevenagel Condensation/Azide–Alkyne 1,3-Dipolar Cycloaddition Reaction in One Pot. ACS Combinatorial Science, 2014, 16, 466-477.	3.8	38
102	Synthesis of 2-aryl-1,2,4-oxadiazolo-benzimidazoles: Tubulin polymerization inhibitors and apoptosis inducing agents. Bioorganic and Medicinal Chemistry, 2015, 23, 4608-4623.	1.4	38
103	Synthesis and Biological Evaluation of 1,2,3â€ŧriazole tethered Pyrazoline and Chalcone Derivatives. Chemical Biology and Drug Design, 2016, 88, 97-109.	1.5	38
104	Design and synthesis of cis-restricted benzimidazole and benzothiazole mimics of combretastatin A-4 as antimitotic agents with apoptosis inducing ability. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4527-4535.	1.0	38
105	A facile I ₂ -catalyzed synthesis of imidazo[1,2-a]pyridines via sp ³ C–H functionalization of azaarenes and evaluation of anticancer activity. Organic and Biomolecular Chemistry, 2017, 15, 6780-6791.	1.5	38
106	Palladiumâ€Catalyzed Aryl CH Activation and Tandem <i>ortho</i> â€Hydroxylation/Alkoxylation of 2â€Aryl Benzimidazoles: Cytotoxicity and DNAâ€Binding Studies. Asian Journal of Organic Chemistry, 2014, 3, 68-76.	1.3	37
107	Synthesis and biological evaluation of imidazo [2,1-b] thiazole-benzimidazole conjugates as microtubule-targeting agents. Bioorganic Chemistry, 2018, 77, 515-526.	2.0	37
108	Synthesis, biological evaluation, and molecular docking analysis of phenstatin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors. Bioorganic Chemistry, 2020, 105, 104447.	2.0	37

#	Article	IF	Citations
109	Synthesis and Biological Evaluation of Imidazopyridine–Oxindole Conjugates as Microtubuleâ€Targeting Agents. ChemMedChem, 2013, 8, 2015-2025.	1.6	36
110	Synthesis, biological evaluation of new oxazolidino-sulfonamides as potential antimicrobial agents. European Journal of Medicinal Chemistry, 2013, 62, 661-669.	2.6	36
111	Design, synthesis and biological evaluation of 1, 4-dihydro indeno[1,2- c] pyrazole linked oxindole analogues as potential anticancer agents targeting tubulin and inducing p53 dependent apoptosis. European Journal of Medicinal Chemistry, 2018, 144, 104-115.	2.6	36
112	Design and synthesis of DNA-intercalative naphthalimide-benzothiazole/cinnamide derivatives: cytotoxicity evaluation and topoisomerase-III \pm inhibition. MedChemComm, 2019, 10, 72-79.	3.5	36
113	Development of Pyrrolo[2,1â€ <i>c</i>][1,4]benzodiazepine βâ€Galactoside Prodrugs for Selective Therapy of Cancer by ADEPT and PMT. ChemMedChem, 2008, 3, 794-802.	1.6	35
114	Synthesis and biological evaluation of imidazopyridinyl-1,3,4-oxadiazole conjugates as apoptosis inducers and topoisomerase $\hat{\text{Ill}}$ inhibitors. Bioorganic Chemistry, 2016, 69, 7-19.	2.0	35
115	Regioselective Ring Expansion of Isatins with <i>In Situ</i> Generated α-Aryldiazomethanes: Direct Access to Viridicatin Alkaloids. Organic Letters, 2018, 20, 3639-3642.	2.4	35
116	Synthesis and antitumour activity of pyrene-linked pyrrolo [2,1-c]benzodiazepine hybrids. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 471-474.	1.0	34
117	Characterization of Improved Sweet Sorghum Genotypes for Biochemical Parameters, Sugar Yield and Its Attributes at Different Phenological Stages. Sugar Tech, 2010, 12, 322-328.	0.9	34
118	2-Anilinonicotinyl linked 2-aminobenzothiazoles and $[1,2,4]$ triazolo $[1,5-b]$ $[1,2,4]$ benzothiadiazine conjugates as potential mitochondrial apoptotic inducers. Bioorganic and Medicinal Chemistry, 2011, 19, 7136-7150.	1.4	34
119	Synthesis and biological evaluation of combretastatin-amidobenzothiazole conjugates as potential anticancer agents. European Journal of Medicinal Chemistry, 2012, 56, 166-178.	2.6	34
120	Synthesis and Biological Evaluation of Benzo[<i>b</i>]furans as Inhibitors of Tubulin Polymerization and Inducers of Apoptosis. ChemMedChem, 2014, 9, 117-128.	1.6	34
121	Apoptosis-inducing agents: a patent review (2010 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 339-354.	2.4	34
122	Synthesis and in vitro cytotoxicity evaluation of \hat{l}^2 -carboline-combretastatin carboxamides as apoptosis inducing agents: DNA intercalation and topoisomerase-II inhibition. Bioorganic and Medicinal Chemistry, 2019, 27, 3285-3298.	1.4	34
123	Bioconversion of Acrylonitrile to Acrylic Acid by Rhodococcus ruber Strain AKSH-84. Journal of Microbiology and Biotechnology, 2011, 21, 37-42.	0.9	34
124	Synthesis and biological evaluation of new $4\hat{l}^2$ -anilino- and $4\hat{l}^2$ -imido-substituted podophyllotoxin congeners. Bioorganic and Medicinal Chemistry, 2005, 13, 6218-6225.	1.4	33
125	Synthesis of $4\hat{l}^2$ -carbamoyl epipodophyllotoxins as potential antitumour agents. Bioorganic and Medicinal Chemistry, 2011, 19, 2975-2979.	1.4	33
126	Synthesis and biological evaluation of phaitanthrin congeners as anti-mycobacterial agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3867-3872.	1.0	33

#	Article	IF	Citations
127	Sulfamic acid promoted one-pot three-component synthesis and cytotoxic evaluation of spirooxindoles. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2199-2202.	1.0	33
128	Discovery of pyrrolospirooxindole derivatives as novel cyclin dependent kinase 4 (CDK4) inhibitors by catalyst-free, green approach. European Journal of Medicinal Chemistry, 2016, 108, 476-485.	2.6	33
129	Sulfamic acid promoted one-pot synthesis of phenanthrene fused-dihydrodibenzo-quinolinones: Anticancer activity, tubulin polymerization inhibition and apoptosis inducing studies. Bioorganic and Medicinal Chemistry, 2018, 26, 1996-2008.	1.4	33
130	Imidazopyridine linked triazoles as tubulin inhibitors, effectively triggering apoptosis in lung cancer cell line. Bioorganic Chemistry, 2018, 80, 714-720.	2.0	33
131	Synthesis of novel C2 and C2–C8 linked pyrrolo[2,1- c][1,4]benzodiazepine-naphthalimide hybrids as DNA-binding agents. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3577-3581.	1.0	32
132	Antitubercular agents. Part 1: Synthesis of phthalimido- and naphthalimido-linked phenazines as new prototype antitubercular agents. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1923-1926.	1.0	32
133	Efforts Towards the Development of New Antitubercular Agents: Potential for Thiolactomycin Based Compounds. Journal of Pharmacy and Pharmaceutical Sciences, 2008, 11, 56.	0.9	32
134	Design and Synthesis of Imidazo[2,1â€ <i>b</i>]thiazole–Chalcone Conjugates: Microtubuleâ€Destabilizing Agents. ChemMedChem, 2014, 9, 2766-2780.	1.6	32
135	Cu(OAc) ₂ â€"Et ₃ N mediated oxidative coupling of α-azido ketones with pyridinium ylides: utilizing in situ generated imines for regioselective synthesis of imidazo[1,2-a]pyridines. Chemical Communications, 2015, 51, 10475-10478.	2.2	32
136	Synthesis of Combretastatinâ€A4 Carboxamidest that Mimic Sulfonyl Piperazines by a Molecular Hybridization Approach: <i>inâ€vitro</i> Cytotoxicity Evaluation and Inhibition of Tubulin Polymerization. ChemMedChem, 2019, 14, 2052-2060.	1.6	32
137	Synthesis of novel non-cross-linking pyrrolobenzodiazepines with remarkable DNA binding affinity and potent antitumour activity. Chemical Communications, 2001, , 437-438.	2.2	31
138	Anti-tubercular agents. Part IV: Synthesis and antimycobacterial evaluation of nitroheterocyclic-based 1,2,4-benzothiadiazines. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5419-5422.	1.0	31
139	p53–Mdm2 inhibitors: patent review (2009 – 2010). Expert Opinion on Therapeutic Patents, 2012, 22, 95-105.	2.4	31
140	Synthesis of a terphenyl substituted 4-aza-2,3-didehydropodophyllotoxin analogues as inhibitors of tubulin polymerization and apoptosis inducers. Bioorganic and Medicinal Chemistry, 2014, 22, 2714-2723.	1.4	31
141	Amberlite IR-120H, an efficient and recyclable solid phase catalyst for the synthesis of quinoxalines: a greener approach. Tetrahedron Letters, 2015, 56, 2803-2808.	0.7	31
142	A one-pot  click' reaction from spiro-epoxides catalyzed by Cu(<scp>i</scp>)-pyrrolidinyl-oxazole-carboxamide. New Journal of Chemistry, 2015, 39, 3973-3981.	1.4	31
143	Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer. International Journal of Nanomedicine, $2016, 11, 873$.	3.3	31
144	Design and synthesis of novel chrysene-linked pyrrolo [2,1- c][1,4]-benzodiazepine hybrids as potential DNA-binding agents. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3451-3454.	1.0	30

#	Article	IF	CITATIONS
145	Design, synthesis, biological evaluation and QSAR studies of novel bisepipodophyllotoxins as cytotoxic agents. Bioorganic and Medicinal Chemistry, 2004, 12, 4197-4209.	1.4	29
146	Synthesis of C8-linked pyrrolo[2,1-c][1,4]benzodiazepine–benzimidazole conjugates with remarkable DNA-binding affinity. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4791-4794.	1.0	29
147	Synthesis and biological activity of fluoroquinolone-pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorganic and Medicinal Chemistry, 2005, 13, 2021-2029.	1.4	29
148	Metabolic Profiling and Biological Activities of Bioactive Compounds Produced by Pseudomonas sp. Strain ICTB-745 Isolated from Ladakh, India. Journal of Microbiology and Biotechnology, 2012, 22, 69-79.	0.9	29
149	Ultrasonic activated efficient method for the cleavage of epoxides with aromatic amines. Ultrasonics Sonochemistry, 2005, 12, 429-431.	3.8	28
150	Solid-phase synthesis of fused [2,1-b]quinazolinone alkaloids. Tetrahedron Letters, 2006, 47, 9025-9028.	0.7	28
151	Recent advances on structural modifications of benzothiazoles and their conjugate systems as potential chemotherapeutics. Expert Opinion on Investigational Drugs, 2012, 21, 619-635.	1.9	28
152	4β-[4′-(1-(Aryl)ureido)benzamide]podophyllotoxins as DNA topoisomerase I and IIα inhibitors and apoptosis inducing agents. Bioorganic and Medicinal Chemistry, 2013, 21, 5198-5208.	1.4	28
153	Synthesis and anticancer activity of heteroaromatic linked $4\hat{l}^2$ -amido podophyllotoxins as apoptotic inducing agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 273-280.	1.0	28
154	Synthesis and biological evaluation of 1,2,3-triazole linked aminocombretastatin conjugates as mitochondrial mediated apoptosis inducers. Bioorganic and Medicinal Chemistry, 2014, 22, 5155-5167.	1.4	28
155	Discovery of curcumin inspired sulfonamide derivatives as a new class of carbonic anhydrase isoforms I, II, IX, and XII inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1274-1281.	2.5	28
156	Curcumin inspired 2-chloro/phenoxy quinoline analogues: Synthesis and biological evaluation as potential anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 892-898.	1.0	28
157	Microwave-assisted one-pot synthesis of new phenanthrene fused-tetrahydrodibenzo-acridinones as potential cytotoxic and apoptosis inducing agents. European Journal of Medicinal Chemistry, 2018, 151, 173-185.	2.6	28
158	Peptides as Potential Anticancer Agents. Current Topics in Medicinal Chemistry, 2019, 19, 1491-1511.	1.0	28
159	An improved iron-mediated synthesis of N-2-aryl substituted 1,2,3-triazoles. RSC Advances, 2013, 3, 7419.	1.7	27
160	Synthesis of imidazo[2,1-b][1,3,4]thiadiazole–chalcones as apoptosis inducing anticancer agents. MedChemComm, 2014, 5, 1718-1723.	3.5	27
161	Molecular iodine-catalysed oxidative CO–C(alkyl) bond cleavage of aryl/heteroaryl alkyl ketones: an efficient strategy to access fused polyheterocycles. New Journal of Chemistry, 2018, 42, 15820-15829.	1.4	27
162	Conversion of Amines to Imines Employing Polymer-Supported Sulfoxide (PSS) and Polymer-Supported Perruthenate (PSP): Synthesis of Pyrrolo[2,1-c][1,4]benzodiazepines. Advanced Synthesis and Catalysis, 2006, 348, 249-254.	2.1	26

#	Article	lF	Citations
163	Synthesis of $4\hat{l}^2$ -N-polyaromatic substituted podophyllotoxins: DNA topoisomerase inhibition, anticancer and apoptosis-inducing activities. Bioorganic and Medicinal Chemistry, 2010, 18, 8493-8500.	1.4	26
164	Synthesis and biological evaluation of cinnamido linked pyrrolo[2,1-c][1,4]benzodiazepines as antimitotic agents. European Journal of Medicinal Chemistry, 2010, 45, 3870-3884.	2.6	26
165	Synthesis, biological evaluation, and molecular modeling of (E)-2-aryl-5-styryl-1,3,4-oxadiazole derivatives as acetylcholine esterase inhibitors. Medicinal Chemistry Research, 2014, 23, 2080-2092.	1.1	26
166	Amberlite IR-120H: an efficient and recyclable heterogeneous catalyst for the synthesis of pyrrolo[1,2-a]quinoxalines and 5′H-spiro[indoline-3,4′-pyrrolo[1,2-a]quinoxalin]-2-ones. Tetrahedron Letters, 2015, 56, 7012-7015.	0.7	26
167	Vanadium-Catalyzed Oxidative C(CO)–C(CO) Bond Cleavage for C–N Bond Formation: One-Pot Domino Transformation of 1,2-Diketones and Amidines into Imides and Amides. Journal of Organic Chemistry, 2017, 82, 7332-7345.	1.7	26
168	Chemoenzymatic synthesis of (S) and (R)-propranolol and sotalol employing one-pot lipase resolution protocol. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4581-4583.	1.0	25
169	Synthesis and study of benzothiazole conjugates in the control of cell proliferation by modulating Ras/MEK/ERK-dependent pathway in MCF-7 cells. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5733-5739.	1.0	25
170	Synthesis and biological evaluation of 4-aza-2,3-dihydropyridophenanthrolines as tubulin polymerization inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3356-3360.	1.0	25
171	Synthesis of 2-anilinopyridyl–triazole conjugates as antimitotic agents. Organic and Biomolecular Chemistry, 2015, 13, 4879-4895.	1.5	25
172	Synthesis of substituted biphenyl methylene indolinones as apoptosis inducers and tubulin polymerization inhibitors. Bioorganic Chemistry, 2019, 86, 210-223.	2.0	25
173	DNA binding potential and cytotoxicity of newly designed pyrrolobenzodiazepine dimers linked through a piperazine side-armed-alkane spacer. Bioorganic and Medicinal Chemistry, 2006, 14, 385-394.	1.4	24
174	Synthesis and potential cytotoxic activity of new phenanthrylphenol-pyrrolobenzodiazepines. European Journal of Medicinal Chemistry, 2010, 45, 2173-2181.	2.6	24
175	Search for New and Novel Chemotherapeutics for the Treatment of Human Malignancies. Mini-Reviews in Medicinal Chemistry, 2010, 10, 405-435.	1.1	24
176	Quinazolino linked $4\hat{l}^2$ -amidopodophyllotoxin conjugates regulate angiogenic pathway and control breast cancer cell proliferation. Bioorganic and Medicinal Chemistry, 2013, 21, 6414-6426.	1.4	24
177	<scp> </scp> -Proline mediated synthesis of quinoxalines; evaluation of cytotoxic and antimicrobial activity. RSC Advances, 2014, 4, 46369-46377.	1.7	24
178	Asymmetric Michael addition of ketones to nitroolefins: pyrrolidinyl-oxazole-carboxamides as new efficient organocatalysts. Organic and Biomolecular Chemistry, 2014, 12, 8008-8018.	1.5	24
179	Synthesis and anticancer potential of benzothiazole linked phenylpyridopyrimidinones and their diones as mitochondrial apoptotic inducers. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 147-151.	1.0	24
180	Synthesis and antimicrobial potential of nitrofuran–triazole congeners. Organic and Biomolecular Chemistry, 2015, 13, 9388-9397.	1.5	24

#	Article	IF	Citations
181	One-pot synthesis of podophyllotoxin–thiourea congeners by employing NH2SO3H/Nal: Anticancer activity, DNA topoisomerase-II inhibition, and apoptosis inducing agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4239-4244.	1.0	24
182	Access to Imidazole Derivatives by Silver(I) Carbonate Mediated Coupling of Vinyl Azides with Secondary Amines. European Journal of Organic Chemistry, 2016, 2016, 1269-1273.	1.2	24
183	Benzo[b]furan derivatives induces apoptosis by targeting the PI3K/Akt/mTOR signaling pathway in human breast cancer cells. Bioorganic Chemistry, 2016, 66, 124-131.	2.0	24
184	Ultrasound assisted, VOSO4 catalyzed synthesis of 4-thiazolidinones: Antimicrobial evaluation of indazole-4-thiazolidinone derivatives. Tetrahedron Letters, 2017, 58, 4632-4637.	0.7	24
185	Synthesis of substituted phenanthrene-9-benzimidazole conjugates: Cytotoxicity evaluation and apoptosis inducing studies. European Journal of Medicinal Chemistry, 2017, 140, 128-140.	2.6	24
186	Synthesis of DNA interactive C3-trans-cinnamide linked \hat{l}^2 -carboline conjugates as potential cytotoxic and DNA topoisomerase I inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 4916-4929.	1.4	24
187	Synthesis and biological evaluation of substituted N-(2-(1H-benzo[d]imidazol-2-yl)phenyl)cinnamides as tubulin polymerization inhibitors. Bioorganic Chemistry, 2020, 103, 104191.	2.0	24
188	Synthesis of C-8 methanesulphonate substituted pyrrolobenzodiazepines as potential antitumour agents. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3517-3519.	1.0	23
189	An efficient and facile nitration of phenols with nitric acid/zinc chloride under ultrasonic conditions. Ultrasonics Sonochemistry, 2004, 11, 455-457.	3.8	23
190	Anti-tubercular agents. Part 7: A new class of diarylpyrrole–oxazolidinone conjugates as antimycobacterial agents. European Journal of Medicinal Chemistry, 2013, 64, 239-251.	2.6	23
191	Sulfamic acid: an efficient and recyclable solid acid catalyst for the synthesis of 4,5-dihydropyrrolo[1,2-a]quinoxalines. Tetrahedron Letters, 2015, 56, 4619-4622.	0.7	23
192	Iron-Mediated One-Pot Synthesis of 3,5-Diarylpyridines from \hat{l}^2 -Nitrostyrenes. Journal of Organic Chemistry, 2016, 81, 2159-2165.	1.7	23
193	Time-Domain Analysis of Molecular Dynamics Trajectories Using Deep Neural Networks: Application to Activity Ranking of Tankyrase Inhibitors. Journal of Chemical Information and Modeling, 2019, 59, 3519-3532.	2.5	23
194	Synthesis of 2-anilinopyridyl linked benzothiazole hydrazones as apoptosis inducing cytotoxic agents. New Journal of Chemistry, 2019, 43, 7150-7161.	1.4	23
195	Synthesis of Novel C3-Linked ?-Carboline-Pyridine Derivatives Employing Khronke Reaction: DNA-binding Ability and Molecular Modeling Studies. Letters in Drug Design and Discovery, 2016, 13, 335-342.	0.4	23
196	The effect of C2-fluoro group on the biological activity of DC-81 and its dimers. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2669-2672.	1.0	22
197	Synthesis, structure analysis, and antibacterial activity of some novel 10-substituted 2-(4-piperidyl/phenyl)-5,5-dioxo $[1,2,4]$ triazolo $[1,5-b][1,2,4]$ benzothiadiazine derivatives. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5400-5405.	1.0	22
198	Pyrrolo[2,1-c][1,4]benzodiazepine- \hat{l}^2 -glucuronide prodrugs with a potential for selective therapy of solid tumors by PMT and ADEPT strategies. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3769-3773.	1.0	22

#	Article	IF	Citations
199	Anti-tubercular agents. Part 5: Synthesis and biological evaluation of benzothiadiazine 1,1-dioxide based congeners. European Journal of Medicinal Chemistry, 2010, 45, 4545-4553.	2.6	22
200	Anti-tubercular agents. Part 6: Synthesis and antimycobacterial activity of novel arylsulfonamido conjugated oxazolidinones. European Journal of Medicinal Chemistry, 2011, 46, 893-900.	2.6	22
201	Synthesis of tetrazole–isoxazoline hybrids as a new class of tubulin polymerization inhibitors. MedChemComm, 2012, 3, 1386.	3.5	22
202	Regio- and stereoselective synthesis of novel spiropyrrolidines through 1,3-dipolar cycloaddition reactions of azomethine ylides and 2-styrylquinazolin-4(3H)-ones. RSC Advances, 2014, 4, 32303-32311.	1.7	22
203	Design and synthesis of 1,2,3-triazolo linked benzo [d]imidazo [2,1-b]thiazole conjugates as tubulin polymerization inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 3285-3297.	1.4	22
204	Synthesis and biological evaluation of arylcinnamide linked combretastatin-A4 hybrids as tubulin polymerization inhibitors and apoptosis inducing agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2957-2964.	1.0	21
205	Design, synthesis and biological evaluation of novel pyrazolochalcones as potential modulators of PI3K/Akt/mTOR pathway and inducers of apoptosis in breast cancer cells. European Journal of Medicinal Chemistry, 2017, 139, 305-324.	2.6	21
206	Telomerase Inhibition and Human Telomeric G-Quadruplex DNA Stabilization by a β-Carboline–Benzimidazole Derivative at Low Concentrations. Biochemistry, 2017, 56, 4392-4404.	1.2	21
207	Synthesis of imidazo-thiadiazole linked indolinone conjugates and evaluated their microtubule network disrupting and apoptosis inducing ability. Bioorganic Chemistry, 2018, 76, 420-436.	2.0	21
208	Multicomponent access to novel proline/cyclized cysteine tethered monastrol conjugates as potential anticancer agents. Journal of Saudi Chemical Society, 2019, 23, 503-513.	2.4	21
209	Synthesis and DNA-binding affinity of A-C8/C-C2 alkoxyamido-linked pyrrolo[2,1-c][1,4]benzodiazepine dimers. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3955-3958.	1.0	20
210	Synthesis of pyrrolo[2,1-c][1,4]benzodiazepines and their conjugates by azido reductive cyclization strategy as potential DNA-binding agents. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2621-2623.	1.0	20
211	Synthesis, anticancer activity and mitochondrial mediated apoptosis inducing ability of 2,5-diaryloxadiazole–pyrrolobenzodiazepine conjugates. Bioorganic and Medicinal Chemistry, 2010, 18, 6666-6677.	1.4	20
212	Synthesis and biological evaluation of $4\hat{l}^2$ -acrylamidopodophyllotoxin congeners as DNA damaging agents. Bioorganic and Medicinal Chemistry, 2011, 19, 4589-4600.	1.4	20
213	The first total synthesis of nhatrangin A. Organic and Biomolecular Chemistry, 2013, 11, 4442.	1.5	20
214	Synthesis and biological evaluation of benzimidazole–oxindole conjugates as microtubule-targeting agents. Bioorganic Chemistry, 2015, 63, 72-84.	2.0	20
215	A facile one pot C C and C N bond formation for the synthesis of spiro-benzodiazepines and their cytotoxicity. Tetrahedron, 2017, 73, 6969-6976.	1.0	20
216	Synthesis of fluorinated analogues of SJG-136 and their DNA-binding potential. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5699-5702.	1.0	19

#	Article	IF	CITATIONS
217	Design, synthesis and biological evaluation of imidazopyridine–propenone conjugates as potent tubulin inhibitors. MedChemComm, 2017, 8, 1000-1006.	3.5	19
218	Transitionâ€Metalâ€Free Oxidative Crossâ€Coupling of Methylhetarenes with Imidazoheterocycles towards Efficient C(sp ²)â~H Carbonylation. Asian Journal of Organic Chemistry, 2017, 6, 890-897.	1.3	19
219	Design, synthesis, and antimicrobial evaluation of 1,4-dihydroindeno[1,2- <i>c</i> pyrazole tethered carbohydrazide hybrids: exploring their <i>in silico</i> ADMET, ergosterol inhibition and ROS inducing potential. MedChemComm, 2019, 10, 806-813.	3.5	19
220	Recent Developments Towards Podophyllotoxin Congeners as Potential Apoptosis Inducers. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 565-574.	0.9	19
221	Phosphonate-linked pyrrolo [2,1-c] [1,4] benzodiazepine conjugates: Synthesis, DNA-binding affinity and cytotoxicity. Bioorganic and Medicinal Chemistry, 2008, 16, 3895-3906.	1.4	18
222	Carbazole–pyrrolo[2,1-c][1,4]benzodiazepine conjugates: design, synthesis, and biological evaluation. MedChemComm, 2011, 2, 780.	3.5	18
223	Design and Synthesis of Aminostilbene–Arylpropenones as Tubulin Polymerization Inhibitors. ChemMedChem, 2014, 9, 2565-2579.	1.6	18
224	Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: Synthesis, DNA-binding affinity and cytotoxic activity. Bioorganic Chemistry, 2015, 59, 23-30.	2.0	18
225	Rational design and synthesis of 2-anilinopyridinyl-benzothiazole Schiff bases as antimitotic agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2549-2558.	1.0	18
226	lodine-catalyzed Csp3-H functionalization of methylhetarenes: One-pot synthesis and cytotoxic evaluation of heteroarenyl-benzimidazoles and benzothiazole. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4039-4043.	1.0	18
227	Design and synthesis of $4\hat{l}^2$ -Acetamidobenzofuranone-podophyllotoxin hybrids and their anti-cancer evaluation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2153-2156.	1.0	18
228	New imidazo[2,1- <i>b</i>]thiazole-based aryl hydrazones: unravelling their synthesis and antiproliferative and apoptosis-inducing potential. RSC Medicinal Chemistry, 2020, 11, 1178-1184.	1.7	18
229	Discovery of Novel Tankyrase Inhibitors through Molecular Docking-Based Virtual Screening and Molecular Dynamics Simulation Studies. Molecules, 2020, 25, 3171.	1.7	18
230	Interaction of Pyrrolobenzodiazepine (PBD) Ligands with Parallel Intermolecular G-Quadruplex Complex Using Spectroscopy and ESI-MS. PLoS ONE, 2012, 7, e35920.	1.1	18
231	Synthesis of C-8 Alkylamino substituted pyrrolo[2,1-c][1,4]benzodiazepines as potential anti-Cancer agents. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1917-1919.	1.0	17
232	Synthesis and DNA-binding ability of pyrrolo $[2,1-c][1,4]$ benzodiazepine-azepane conjugates. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1160-1163.	1.0	17
233	Efficient Solid-Phase Synthesis of a Library of Imidazo[1,2-a]pyridine-8-carboxamides. ACS Combinatorial Science, 2007, 9, 267-274.	3.3	17
234	Synthesis and biological evaluation of cinnamido linked benzophenone hybrids as tubulin polymerization inhibitors and apoptosis inducing agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2309-2314.	1.0	17

#	Article	IF	Citations
235	Design and synthesis of pyrazole/isoxazole linked arylcinnamides as tubulin polymerization inhibitors and potential antiproliferative agents. Organic and Biomolecular Chemistry, 2015, 13, 10162-10178.	1.5	17
236	Design, synthesis of phenstatin/isocombretastatin-oxindole conjugates as antimitotic agents. Bioorganic and Medicinal Chemistry, 2016, 24, 1729-1740.	1.4	17
237	New Quinoline Linked Chalcone and Pyrazoline Conjugates: Molecular Properties Prediction, Antimicrobial and Antitubercular Activities. ChemistrySelect, 2017, 2, 2989-2996.	0.7	17
238	Synthesis of new triazole fused imidazo[2,1-b]thiazole hybrids with emphasis on Staphylococcus aureus virulence factors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126621.	1.0	17
239	Catalyst-free stereoselective cyclopropanation of electron deficient alkenes with ethyl diazoacetate. RSC Advances, 2013, 3, 15600.	1.7	16
240	Synthesis and Biological Evaluation of Imidazo [2,1-b] [1,3,4] thiadiazole-Linked Oxindoles as Potent Tubulin Polymerization Inhibitors. ChemMedChem, 2014, 9, 1463-1475.	1.6	16
241	Phenyliodonium Diacetate Mediated One-Pot Synthesis of Benzimidazoles and Quinazolinones from Benzylamines. ChemistrySelect, 2016, 1, 2895-2899.	0.7	16
242	Synthesis and mechanistic aspects of 2-anilinonicotinyl-pyrazolo[1,5-a]pyrimidine conjugates that regulate cell proliferation in MCF-7 cells via estrogen signaling. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2077-2083.	1.0	16
243	Regioselective oxidative cross-coupling of benzo[d]imidazo[2,1-b]thiazoles with styrenes: a novel route to C3-dicarbonylation. Organic and Biomolecular Chemistry, 2017, 15, 7696-7704.	1.5	16
244	lodine mediated oxidative cross-coupling of unprotected anilines and heteroarylation of benzothiazoles with 2-methylquinoline. Organic and Biomolecular Chemistry, 2018, 16, 635-644.	1.5	16
245	Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Current Medicinal Chemistry, 2020, 26, 7212-7280.	1.2	16
246	Synthesis of Arylâ€Substituted Naphthaleneâ€Linked Pyrrolobenzodiazepine Conjugates as Potential Anticancer Agents with Apoptosisâ€Inducing Ability. ChemMedChem, 2011, 6, 1665-1679.	1.6	15
247	Synthesis and biological evaluation of $4\hat{l}^2$ -sulphonamido and $4\hat{l}^2$ -[($4\hat{a}\in^2$ -sulphonamido)benzamide]podophyllotoxins as DNA topoisomerase-Ill \hat{l} and apoptosis inducing agents. Bioorganic and Medicinal Chemistry, 2012, 20, 2054-2066.	1.4	15
248	Novel Etoposide Analogue Modulates Expression of Angiogenesis Associated microRNAs and Regulates Cell Proliferation by Targeting STAT3 in Breast Cancer. PLoS ONE, 2015, 10, e0142006.	1.1	15
249	Bisindole-PBD regulates breast cancer cell proliferation via SIRT-p53 axis. Cancer Biology and Therapy, 2015, 16, 1486-1501.	1.5	15
250	Catalyst-free, one pot and three-component synthesis of $4\hat{a}\in^2$ -phenyl- $1\hat{a}\in^2$ H-spiro[indoline-3, $2\hat{a}\in^2$ -quinazolin]-2-ones and 2,4-diphenyl-1,2-dihydroquinazolines. Tetrahedron Letters, 2015, 56, 6373-6376.	0.7	15
251	Design, synthesis and antiproliferative activity of the new conjugates of E7010 and resveratrol as tubulin polymerization inhibitors. Organic and Biomolecular Chemistry, 2016, 14, 1382-1394.	1.5	15
252	Phenacyl azides as efficient intermediates: one-pot synthesis of pyrrolidines and imidazoles. Organic and Biomolecular Chemistry, 2017, 15, 2730-2733.	1.5	15

#	Article	IF	CITATIONS
253	2-aryl benzimidazole conjugate induced apoptosis in human breast cancer MCF-7 cells through caspase independent pathway. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 118-134.	2.2	15
254	Synthesis and biological evaluation of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides as antimitotic agents. Bioorganic Chemistry, 2019, 83, 535-548.	2.0	15
255	NEW HALOGENATION REAGENT SYSTEM FOR ONE-POT CONVERSION OF ALCOHOLS INTO IODIDES AND AZIDES*. Synthetic Communications, 2001, 31, 827-833.	1.1	14
256	Synthesis and DNA binding affinity of novel A-C8/C-C2-exo unsaturated alkoxyamido-linked pyrrolo[2,1-c][1,4]benzodiazepine dimers. Bioorganic and Medicinal Chemistry, 2004, 12, 4337-4350.	1.4	14
257	Design, synthesis, and evaluation of mixed imine–amine pyrrolobenzodiazepine dimers with efficient DNA binding affinity and potent cytotoxicity. Bioorganic and Medicinal Chemistry, 2004, 12, 5427-5436.	1.4	14
258	Synthesis and biological evaluation of anilino substituted pyrimidine linked pyrrolobenzodiazepines as potential anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5232-5236.	1.0	14
259	Chalcone-imidazolone conjugates induce apoptosis through DNA damage pathway by affecting telomeres. Cancer Cell International, 2011, 11, 11.	1.8	14
260	Synthesis and evaluation of N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)nicotinamides as potential anticancer agents that inhibit tubulin polymerization. Bioorganic and Medicinal Chemistry, 2014, 22, 3465-3477.	1.4	14
261	Investigation of the mechanism and apoptotic pathway induced by $4\hat{l}^2$ cinnamido linked podophyllotoxins against human lung cancer cells A549. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 1518-1529.	2.2	14
262	Visible Light Driven Coupling of $2\hat{a} \in \mathbf{a}$ minopyridines and $\hat{l} \pm \hat{a} \in \mathbf{K}$ eto Vinyl Azides for the Synthesis of Imidazo $[1,\hat{a} \in \mathbb{Z}$ $\hat{a} \in \mathbb{Z}$ $\hat{a} \in \mathbb{Z}$ i > a < \mathbb{Z} i >] pyridines and Their Cytotoxicity. ChemistrySelect, 2017, 2, 8158-8161.	0.7	14
263	Click chemistry-assisted synthesis of triazolo linked podophyllotoxin conjugates as tubulin polymerization inhibitors. MedChemComm, 2017, 8, 1817-1823.	3.5	14
264	Synthesis of enamino-2-oxindoles via conjugate addition between α-azido ketones and 3-alkenyl oxindoles: Cytotoxicity evaluation and apoptosis inducing studies. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3564-3573.	1.0	14
265	Novel linezolid-based oxazolidinones as potent anticandidiasis and antitubercular agents. Bioorganic Chemistry, 2022, 126, 105869.	2.0	14
266	Synthesis, anticancer activity and apoptosis inducing ability of anthranilamide-PBD conjugates. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3310-3313.	1.0	13
267	Synthesis and biological evaluation of estradiol linked pyrrolo[2,1-c][1,4]benzodiazepine (PBD) conjugates as potential anticancer agents. Bioorganic and Medicinal Chemistry, 2011, 19, 2565-2581.	1.4	13
268	Total Synthesis of Rutaecarpine and Analogues by Tandem Azido Reductive Cyclization Assisted by Microwave Irradiation. Synlett, 2011, 2011, 61-64.	1.0	13
269	Synthesis of imidazothiadiazole–benzimidazole conjugates as mitochondrial apoptosis inducers. MedChemComm, 2014, 5, 1644-1650.	3.5	13
270	Investigation of the apoptotic pathway induced by benzimidazole–oxindole conjugates against human breast cancer cells MCF-7. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3313-3317.	1.0	13

#	Article	IF	CITATIONS
271	Sulfamic acid catalyzed one-pot, three-component green approach: synthesis and cytotoxic evaluation of pyrazolyl-thiazole congeners. New Journal of Chemistry, 2017, 41, 3745-3749.	1.4	13
272	Transition-Metal-Free One-Pot Tandem Synthesis of 3-Ketoisoquinolines from Aldehydes and Phenacyl Azides. Journal of Organic Chemistry, 2019, 84, 12334-12343.	1.7	13
273	l̂²-Carboline tethered cinnamoyl 2-aminobenzamides as class I selective HDAC inhibitors: Design, synthesis, biological activities and modelling studies. Bioorganic Chemistry, 2021, 117, 105461.	2.0	13
274	Improved Efficient Conversion of Aldehydes to Nitriles <i>via </i> Their N, N-Dimethyl Hydrazones. Synthetic Communications, 1998, 28, 4507-4512.	1.1	12
275	Lipaseâ€Catalyzed Enantiomer Separation of 3â€Hydroxyâ€4â€(tosyloxy)butanenitrile: Synthesis of (<i>R< i>)â€GABOB (=(3<i>R< i>)â€GAminoâ€3â€hydroxybutanoic Acid) and (<i>R< i>)â€Carnitine Hydrochlo (=(2<i>R< i>)â€3â€Carboxyâ€2â€hydroxyâ€<i>N< i>,<i>N< i>,<i>N< i>,<i>N< i>,<i>N< i>,<i>N< i>,<i>N< i>,<i n<<="" n< i="" td=""><td>ride le). Helvet</td><td>ica¹²</td></i></i></i></i></i></i></i></i></i></i></i></i>	ride le). Helvet	ica ¹²
276	Enhancing the Shelf Life of Sweet Sorghum [Sorghum bicolor (L.) Moench] Juice Through Pasteurization While Sustaining Fermentation Efficiency. Sugar Tech, 2013, 15, 328-337.	0.9	12
277	A carbohydrate approach for the formal total synthesis of (â^')-aspergillide C. Beilstein Journal of Organic Chemistry, 2014, 10, 3122-3126.	1.3	12
278	Biotin-c10-AppCH2ppA is an effective new chemical proteomics probe for diadenosine polyphosphate binding proteins. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2928-2933.	1.0	12
279	Development of pyrrolo [2,1- c] [1,4] benzodiazepine \hat{l}^2 -glucoside prodrugs for selective therapy of cancer. Bioorganic Chemistry, 2018, 76, 288-293.	2.0	12
280	Synthesis and biological evaluation of new bisindole-imidazopyridine hybrids as apoptosis inducers. Bioorganic Chemistry, 2019, 87, 484-494.	2.0	12
281	lodine-promoted one-pot synthesis of 1,3,4-oxadiazole scaffolds <i>via</i> sp ³ C–H functionalization of azaarenes. New Journal of Chemistry, 2019, 43, 15999-16006.	1.4	12
282	Efficient and green sulfamic acid catalyzed synthesis of new 1,2-dihydroquinazoline derivatives with antibacterial potential. Arabian Journal of Chemistry, 2019, 12, 3546-3554.	2.3	12
283	Synthetic lethality on drug discovery: an update on cancer therapy. Expert Opinion on Drug Discovery, 2020, 15, 823-832.	2.5	12
284	Synthesis and DNA-binding ability of C2R-fluoro substituted DC-81 and its dimers. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 803-806.	1.0	11
285	Anthranilamide–Pyrazolo[1,5â€ <i>a</i>]pyrimidine Conjugates as p53 Activators in Cervical Cancer Cells. ChemMedChem, 2012, 7, 1453-1464.	1.6	11
286	Feasibility of Sustaining Sugars in Sweet Sorghum Stalks During Post-Harvest Stage by Exploring Cultivars and Chemicals: A Desk Study. Sugar Tech, 2012, 14, 21-25.	0.9	11
287	Synthesis of 2-anilinopyridine dimers as microtubule targeting and apoptosis inducing agents. Bioorganic and Medicinal Chemistry, 2014, 22, 6755-6767.	1.4	11
288	New (3-(1H-benzo[d]imidazol-2-yl))/(3-(3H-imidazo[4,5-b]pyridin-2-yl))-(1H-indol-5-yl)(3,4,5-trimethoxyphenyl)methan conjugates as tubulin polymerization inhibitors. MedChemComm, 2018, 9, 275-281.	O 132 5	11

#	Article	IF	CITATIONS
289	Synthesis and biological evaluation of 10-substituted imidazo[1,2-b][1,2,4]benzothiadiazine 5,5-dioxides and their 2,10-dihydro analogs. European Journal of Medicinal Chemistry, 1987, 22, 157-160.	2.6	10
290	Efficient chemoenzymatic synthesis of (S)- and (R)-5-(1-Aminoethyl)-2-(cyclohexylmethoxy)benzamide: key intermediate for Src-SH2 inhibitor. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1735-1738.	1.0	10
291	Pyrrolo[2,1-c][1,4]benzodiazepine–anthraquinone conjugates. Synthesis, DNA binding and cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4907-4909.	1.0	10
292	Aryl-imidazothiadiazole analogues as microtubule disrupting agents. MedChemComm, 2015, 6, 1842-1856.	3.5	10
293	Isolation and Characterization of Cellulose from Sweet Sorghum Bagasse. Sugar Tech, 2015, 17, 395-403.	0.9	10
294	Synthesis, DNA binding affinity and anticancer activity of novel 4H-benzo[g][1,2,3]triazolo[5,1-c][1,4]oxazocines. Organic and Biomolecular Chemistry, 2016, 14, 9294-9305.	1.5	10
295	Copper-Catalysed Tandem Synthesis of Substituted Quinazolines from Phenacyl Azides and <i>O</i> -Carbonyl Anilines. ChemistrySelect, 2017, 2, 5378-5383.	0.7	10
296	Metalâ€Free Aerobic Oxidative Câ^'C Bond Cleavage between the Carbonyl Carbon and the αâ€Carbon of αâ€Azido Ketones: A Novel Synthesis of Nâ€Alkylated Benzamides. Asian Journal of Organic Chemistry, 2017, 6, 1498-1504.	1.3	10
297	Synthesis of new bisâ€pyrazole linked hydrazides and their in vitro evaluation as antimicrobial and antiâ€biofilm agents: A mechanistic role on ergosterol biosynthesis inhibition in <i>Candida albicans</i> . Chemical Biology and Drug Design, 2019, 94, 1339-1351.	1.5	10
298	Design and Synthesis of 5â€Morpholinoâ€Thiopheneâ€Indole/ Oxindole Hybrids as Cytotoxic Agents. ChemistrySelect, 2020, 5, 4356-4363.	0.7	10
299	Facile Transformation of N,N-Dimethylhydrazones and Tosylhydrazones to Ketones with Dimethyl Sulfate and Potassium Carbonate. Synthetic Communications, 1998, 28, 3927-3931.	1.1	9
300	Embracing synthetic lethality of novel anticancer therapies. Expert Opinion on Drug Discovery, 2015, 10, 1119-1132.	2.5	9
301	Synthesis of 2-anilinopyridine–arylpropenone conjugates as tubulin inhibitors and apoptotic inducers. RSC Advances, 2015, 5, 97367-97380.	1.7	9
302	Diphenylphosphoryl Azide (DPPA)â€Mediated Oneâ€Pot Synthesis of Oxazolo[4,5â€ <i>c</i>][1,8]naphthyridinâ€4(5 <i>H</i>)â€ones, Oxazolo[4,5â€ <i>c</i>]quinolineâ€4(5 <i>H</i>)â€ones, and Tosyloxazolâ€5â€yl Pyridines. Asian Journal of Organic Chemistry, 2017, 6, 898-906.	1.3	9
303	Molecular Iodineâ€Promoted Transimination for the Synthesis of 6â€Phenylpyrido[2′,1′:2,3]imidazo[4,5 <i> </i>]quinoline and 6â€(Pyridinâ€2â€yl)pyrido[2′,1′:2,3]imidazo[4,5 <i> </i>]quinolines. Asian Journal of Organic Chemistry, 1830-1837.	2 0 17, 6,	9
304	lodine promoted dual oxidative C(sp ³)â€"H amination of 2-methyl-3-arylquinazolin-4(3 <i>H</i>)-ones: a facile route to 1,4-diarylimidazo[1,5- <i>a</i>)quinazolin-5(4 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2018, 16, 1720-1727.	1.5	9
305	In-silico driven design and development of spirobenzimidazo-quinazolines as potential DNA gyrase inhibitors. Biomedicine and Pharmacotherapy, 2021, 134, 111132.	2.5	9
306	An expedient total synthesis of mupirocin H. RSC Advances, 2014, 4, 37629.	1.7	8

#	Article	IF	CITATIONS
307	An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug–drug and drug–herb interaction by LCâ€ESI/MS/MS. Biomedical Chromatography, 2016, 30, 1556-1572.	0.8	8
308	Development and Biological Evaluation of Imidazothiazole propenones as Tubulin Inhibitors that Effectively Triggered Apoptotic Cell Death in Alveolar Lung Cancer Cell Line. ChemistrySelect, 2017, 2, 6480-6487.	0.7	8
309	Design, Synthesis and Biological Evaluation of 2-Anilinopyridyl-Linked Oxindole Conjugates as Potent Tubulin Polymerisation Inhibitors. ChemistrySelect, 2017, 2, 9901-9910.	0.7	8
310	Synthesis and in Vitro Cytotoxicity Evaluation of Phenanthrene Linked 2,4- Thiazolidinediones as Potential Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 1127-1140.	0.9	8
311	Identification, characterization and evaluation of novel antifungal cyclic peptides from Neobacillus drentensis. Bioorganic Chemistry, 2021, 115, 105180.	2.0	8
312	Synthesis of Benzo[d]imidazo[2,1-b]thiazole-Propenone Conjugates as Cytotoxic and Apoptotic Inducing Agents. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 347-355.	0.9	8
313	Enzymatic regeneration of aldehydes and ketones from hydrazones/oximes by baker's yeast in organic media. Biotechnology Letters, 1992, 14, 929-932.	1.1	7
314	Synthesis, biological evaluation of 5-carbomethoxymethyl-7-hydroxy-2-pentylchromone, 5-carboethoxymethyl-4′,7-dihydroxyflavone and their analogues. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4891-4895.	1.0	7
315	Synthesis and Biological Evaluation of Benzo[<i>d</i>)[1,3]Dioxolâ€5â€yl Chalcones as Antiproliferating Agents. Chemical Biology and Drug Design, 2015, 86, 1267-1284.	1.5	7
316	Annulation of 4â€Hydroxypyrones and αâ€Keto Vinyl Azides; A Regiospecific Approach towards the Synthesis of Furo[3, 2]Pyrone Scaffolds under Catalyst Free Condition. ChemistrySelect, 2017, 2, 8122-8126.	0.7	7
317	Statistical optimization of production conditions of \hat{l}^2 -glucosidase from Bacillus stratosphericus strain SG9. 3 Biotech, 2017, 7, 221.	1.1	7
318	An efficient RuCl 3 \hat{A} ·H 2 O/I 2 catalytic system: A facile access to 3-aroylimidazo[1,2- a]pyridines from 2-aminopyridines and chalcones. Journal of Saudi Chemical Society, 2018, 22, 90-100.	2.4	7
319	Synthesis of (Z)-3-(arylamino)-1-(3-phenylimidazo[1,5-a]pyridin-1-yl)prop-2-en-1-ones as potential cytotoxic agents. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127432.	1.0	7
320	2â€Anilinoâ€3â€Aroylquinolines as Potent Tubulin Polymerization Inhibitors. ChemMedChem, 2016, 11, 2050-2062.	1.6	6
321	Styryl Quinazolinones as Potential Inducers of Myeloid Differentiation via Upregulation of C/EBPα. Molecules, 2018, 23, 1938.	1.7	6
322	Synthesis and biological evaluation of phenyl-amino-pyrimidine and indole/oxindole conjugates as potential BCR-ABL inhibitors. Medicinal Chemistry Research, 2019, 28, 633-645.	1.1	6
323	Design, Synthesis and Biological Evaluation of Substituted (1â€(4â€chlorobenzyl)â€1 <i>H</i> à€indolâ€3â€yl) 1 <i>H</i> â€(1,2,3â€triazolâ€4â€yl)methanones as Antifungal Agents. ChemistrySelect, 2019, 4, 2258-2266.	0.7	6
324	lodineâ€Mediated Oxidative Annulation by C–C Cleavage: A Domino Synthetic Approach to Quinazolinones and Benzo[4,5]imidazo[1,2â€ <i>c</i>)quinazolines. ChemistrySelect, 2020, 5, 3923-3928.	0.7	6

#	Article	IF	Citations
325	Synthesis and characterization of novel combretastatin analogues of 1,1-diaryl vinyl sulfones, with antiproliferative potential via in-silico and in-vitro studies. Scientific Reports, 2022, 12, 1901.	1.6	6
326	Synthesis and Anticancer Activities of New Benzothiadiazinyl Hydrazinecarboxamides and Anilino[1,2,4]triazolo[1,5-b][1,2,4]thiadiazine 5,5-diones. Medicinal Chemistry, 2011, 7, 165-172.	0.7	5
327	A novel bisindole-PBD conjugate causes DNA damage induced apoptosis via inhibition of DNA repair pathway. Cancer Biology and Therapy, 2014, 15, 1320-1332.	1.5	5
328	Chemical Preservatives-Based Storage Studies and Ethanol Production from Juice of Sweet Sorghum Cultivar, ICSV 93046. Sugar Tech, 2015, 17, 404-411.	0.9	5
329	Oneâ€Pot Synthesis of Naphtho[1′,2′:4,5]imidazo[1,2â€ <i>a</i>]pyridinâ€5â€yl(aryl)methanones through Sequential Sonogashira Coupling/Alkyne–Carbonyl Metathesis. European Journal of Organic Chemistry, 2017, 2017, 4026-4034.	1.2	5
330	Novel approaches for the development of direct KRAS inhibitors: structural insights and drug design. Expert Opinion on Drug Discovery, 2022, 17, 247-257.	2.5	5
331	Effect of Micronutrient Treatments in Main and Ratoon Crops of Sweet Sorghum Cultivar ICSV 93046 Under Tropical Conditions. Sugar Tech, 2012, 14, 370-375.	0.9	4
332	Synthesis and Biological Evaluation of Thieno[2, 3â€ <i>d</i>]pyrimidineâ€amides as Potential Anticancer Agents. ChemistrySelect, 2018, 3, 3101-3106.	0.7	4
333	New indenopyrazole linked oxadiazole conjugates as anti-pancreatic cancer agents: Design, synthesis, in silico studies including 3D-QSAR analysis. Bioorganic and Medicinal Chemistry Letters, 2021, 44, 128094.	1.0	4
334	Evaluation of Anticancer and Anti-Mitotic Properties of Quinazoline and Quinazolino-Benzothiadiazine Derivatives. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 599-611.	0.9	4
335	Vanadiumâ€Catalyzed Nâ€Benzoylation of 2â€Aminopyridines via Oxidative C(CO)â^'C(CO) Bond Cleavage of 1,2â€Diketones, Nâ†'N′ Aroyl Migration and Hydrolysis of 2â€(Diaroylamino)pyridines. Asian Journal of Organic Chemistry, 2018, 7, 865-869.	1.3	3
336	Synthesis, DNA Binding Ability and Anticancer Activity of 2-heteroaryl Substituted Benzimidazoles Linked Pyrrolo[2,1-c][1,4]benzodiazepine Conjugates. Medicinal Chemistry, 2013, 9, 651-659.	0.7	3
337	The molecular structure of thio-ether fatty acids influences PPAR-dependent regulation of lipid metabolism. Bioorganic and Medicinal Chemistry, 2016, 24, 1191-1203.	1.4	2
338	Styryl quinazolinones and its ethynyl derivatives induce myeloid differentiation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2286-2289.	1.0	2
339	Base-mediated 1,3-dipolar cycloaddition of pyridinium bromides with bromoallyl sulfones: a facile access to indolizine scaffolds. Organic and Biomolecular Chemistry, 2020, 18, 8694-8701.	1.5	2
340	Stereoselective synthesis of $(\langle i \rangle Z \langle i \rangle)$ -1,3-bis $(\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl)-isoindolines from aldehydes and phenacyl azides under metal free conditions. Chemical Communications, 2021, 57, 9542-9545.	2.2	2
341	A Catalytic, One-pot and Green Synthesis of \hat{l} ±-Amino Nitriles: Cu(BF4)2.x H2O an Efficient Catalyst. Letters in Organic Chemistry, 2017, 14, .	0.2	2
342	Synthesis of Benzopyran Linked Pyrrolo[2,1-c][1,4]benzodiazepines as DNA-Binding and Potential Anticancer Agents. Medicinal Chemistry, 2013, 9, 177-192.	0.7	2

AHMED KAMAL

#	Article	IF	CITATIONS
343	Oneâ€Pot Synthesis and Biological Evaluation of Arylpropenone Aminochalcone Conjugates as Potential Apoptotic Inducers. ChemistrySelect, 2019, 4, 4672-4678.	0.7	1
344	Hybrid Pharmacophore Design and Synthesis of Naphthalimide– Benzimidazole Conjugates as Potential Anticancer Agents. Letters in Drug Design and Discovery, 2015, 12, 374-384.	0.4	1
345	Identification and characterization of in vitro and in vivo fidarestat metabolites: Toxicity and efficacy evaluation of metabolites. Journal of Mass Spectrometry, 2021, 56, e4694.	0.7	0