
Matti Wahlsten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4362363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena sp. Strain 37 and Molecular Methods To Detect Potential Producers. Applied and Environmental Microbiology, 2011, 77, 7271-7278.	3.1	166
2	Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5886-5891.	7.1	138
3	Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I. Applied and Environmental Microbiology, 2004, 70, 5756-5763.	3.1	131
4	Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1909-17.	7.1	102
5	Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evolutionary Biology, 2007, 7, 183.	3.2	97
6	Genome Mining Expands the Chemical Diversity of the Cyanobactin Family to Include Highly Modified Linear Peptides. Chemistry and Biology, 2013, 20, 1033-1043.	6.0	90
7	Direct Evidence for Production of Microcystins by <i>Anabaena</i> Strains from the Baltic Sea. Applied and Environmental Microbiology, 2007, 73, 6543-6550.	3.1	86
8	Antifungal Compounds from Cyanobacteria. Marine Drugs, 2015, 13, 2124-2140.	4.6	83
9	Highly Diverse Cyanobactins in Strains of the Genus <i>Anabaena</i> . Applied and Environmental Microbiology, 2010, 76, 701-709.	3.1	73
10	New Structural Variants of Aeruginosin Produced by the Toxic Bloom Forming Cyanobacterium Nodularia spumigena. PLoS ONE, 2013, 8, e73618.	2.5	65
11	The nonâ€ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloomâ€forming cyanobacterium <i>Nodularia spumigena</i> . Molecular Microbiology, 2009, 73, 924-937.	2.5	63
12	Strains of the cyanobacterial genera Calothrix and Rivularia isolated from the Baltic Sea display cryptic diversity and are distantly related to Gloeotrichia and Tolypothrix. FEMS Microbiology Ecology, 2007, 61, 74-84.	2.7	60
13	Effects of dissolved cyanobacterial toxins on the survival and egg hatching of estuarine calanoid copepods. Marine Biology, 2002, 140, 577-583.	1.5	56
14	Analysis of an Inactive Cyanobactin Biosynthetic Gene Cluster Leads to Discovery of New Natural Products from Strains of the Genus Microcystis. PLoS ONE, 2012, 7, e43002.	2.5	54
15	Expression of luciferase genes from different origins in Bacillus subtilis. Molecular Genetics and Genomics, 1992, 232, 498-504.	2.4	52
16	Marine Benthic Cyanobacteria Contain Apoptosis-Inducing Activity Synergizing with Daunorubicin to Kill Leukemia Cells, but not Cardiomyocytes. Marine Drugs, 2010, 8, 2659-2672.	4.6	52
17	Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress. Applied and Environmental Microbiology, 2015, 81, 5212-5222.	3.1	49
18	A Unique Tryptophan Câ€Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway. Angewandte Chemie - International Edition, 2016, 55, 3596-3599.	13.8	49

MATTI WAHLSTEN

#	Article	IF	CITATIONS
19	A Novel Cyanobacterial Nostocyclopeptide is a Potent Antitoxin against Microcystins. ChemBioChem, 2010, 11, 1594-1599.	2.6	47
20	Nostosins, Trypsin Inhibitors Isolated from the Terrestrial Cyanobacterium <i>Nostoc</i> sp. Strain FSN. Journal of Natural Products, 2014, 77, 1784-1790.	3.0	41
21	Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria). Microbiology (United Kingdom), 2008, 154, 1007-1014.	1.8	36
22	Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium <i>Nostoc</i> sp. CENA543. ACS Chemical Biology, 2017, 12, 2746-2755.	3.4	35
23	Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543. Frontiers in Microbiology, 2017, 8, 1963.	3.5	35
24	Benthic cyanobacteria from the Baltic Sea contain cytotoxicAnabaena,Nodularia, andNostoc strains and an apoptosis-inducingPhormidium strain. Environmental Toxicology, 2005, 20, 285-292.	4.0	33
25	Anabaenolysins, Novel Cytolytic Lipopeptides from Benthic Anabaena Cyanobacteria. PLoS ONE, 2012, 7, e41222.	2.5	33
26	Biosynthesis of the Bis-Prenylated Alkaloids Muscoride A and B. ACS Chemical Biology, 2019, 14, 2683-2690.	3.4	32
27	Nostophycin Biosynthesis Is Directed by a Hybrid Polyketide Synthase-Nonribosomal Peptide Synthetase in the Toxic Cyanobacterium Nostoc sp. Strain 152. Applied and Environmental Microbiology, 2011, 77, 8034-8040.	3.1	29
28	Convergent evolution of [D-Leucine1] microcystin-LR in taxonomically disparate cyanobacteria. BMC Evolutionary Biology, 2013, 13, 86.	3.2	29
29	4-Methylproline Guided Natural Product Discovery: Co-Occurrence of 4-Hydroxy- and 4-Methylprolines in Nostoweipeptins and Nostopeptolides. ACS Chemical Biology, 2014, 9, 2646-2655.	3.4	28
30	A high proportion of Baltic Sea benthic cyanobacterial isolates contain apoptogens able to induce rapid death of isolated rat hepatocytes. Toxicon, 2005, 46, 252-260.	1.6	27
31	Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13669-13674.	7.1	27
32	Sphaerocyclamide, a prenylated cyanobactin from the cyanobacterium Sphaerospermopsis sp. LEGE 00249. Scientific Reports, 2018, 8, 14537.	3.3	27
33	Dereplication of Natural Products with Antimicrobial and Anticancer Activity from Brazilian Cyanobacteria. Toxins, 2020, 12, 12.	3.4	27
34	Nodularin uptake and induction of oxidative stress in spinach (Spinachia oleracea). Journal of Plant Physiology, 2011, 168, 594-600.	3.5	26
35	Pathologic Findings and Toxin Identification in Cyanobacterial (<i>Nodularia spumigena</i>) Intoxication in a Dog. Veterinary Pathology, 2012, 49, 755-759.	1.7	26
36	N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway. Biochemistry, 2018, 57, 6860-6867.	2.5	26

MATTI WAHLSTEN

#	Article	IF	CITATIONS
37	Rearranged Biosynthetic Gene Cluster and Synthesis of Hassallidin E in <i>Planktothrix serta</i> PCC 8927. ACS Chemical Biology, 2017, 12, 1796-1804.	3.4	25
38	Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1510-1521.	2.6	25
39	Lichen species identity and diversity of cyanobacterial toxins in symbiosis. New Phytologist, 2013, 198, 647-651.	7.3	22
40	Pseudoaeruginosins, Nonribosomal Peptides inNodularia spumigena. ACS Chemical Biology, 2015, 10, 725-733.	3.4	22
41	The Swinholide Biosynthesis Gene Cluster from a Terrestrial Cyanobacterium, Nostoc sp. Strain UHCC 0450. Applied and Environmental Microbiology, 2018, 84, .	3.1	21
42	Acyloxymethyl Esterification of Nodularin-R and Microcystin-LA Produces Inactive Protoxins that Become Reactivated and Produce Apoptosis inside Intact Cells. Journal of Medicinal Chemistry, 2009, 52, 5758-5762.	6.4	20
43	The Genetic Basis for O-Acetylation of the Microcystin Toxin in Cyanobacteria. Chemistry and Biology, 2013, 20, 861-869.	6.0	20
44	The Biosynthesis of Rare Homo-Amino Acid Containing Variants of Microcystin by a Benthic Cyanobacterium. Marine Drugs, 2019, 17, 271.	4.6	20
45	Cyclic peptide production using a macrocyclase with enhanced substrate promiscuity and relaxed recognition determinants. Chemical Communications, 2017, 53, 10656-10659.	4.1	19
46	Production and specificity of monoclonal antibodies against nodularin conjugated through N-methyldehydrobutyrine. Toxicon, 2001, 39, 1453-1459.	1.6	18
47	Cyanobacteria from Terrestrial and Marine Sources Contain Apoptogens Able to Overcome Chemoresistance in Acute Myeloid Leukemia Cells. Marine Drugs, 2014, 12, 2036-2053.	4.6	15
48	Comparative Genomics of the Baltic Sea Toxic Cyanobacteria Nodularia spumigena UHCC 0039 and Its Response to Varying Salinity. Frontiers in Microbiology, 2018, 9, 356.	3.5	15
49	Toward the Reconstitution of a Two-Enzyme Cascade for Resveratrol Synthesis on Potyvirus Particles. Frontiers in Plant Science, 2016, 7, 89.	3.6	14
50	Insight into the genome and brackish water adaptation strategies of toxic and bloom-forming Baltic Sea Dolichospermum sp. UHCC 0315. Scientific Reports, 2019, 9, 4888.	3.3	14
51	Shared PKS Module in Biosynthesis of Synergistic Laxaphycins. Frontiers in Microbiology, 2020, 11, 578878.	3.5	14
52	A liquid chromatography–mass spectrometric method for the detection of cyclic β-amino fatty acid lipopeptides. Journal of Chromatography A, 2016, 1438, 76-83.	3.7	13
53	Potent Inhibitor of Human Trypsins from the Aeruginosin Family of Natural Products. ACS Chemical Biology, 2021, 16, 2537-2546.	3.4	11
54	Secondary metabolite from <i><scp>N</scp>ostoc</i> â€ <scp>XPORK14A</scp> inhibits photosynthesis and growth of <i><scp>S</scp>ynechocystis</i> â€ <scp>PCC</scp> 6803. Plant, Cell and Environment, 2014, 37, 1371-1381.	5.7	10

MATTI WAHLSTEN

#	Article	IF	CITATIONS
55	Microbial Communities of Cladonia Lichens and Their Biosynthetic Gene Clusters Potentially Encoding Natural Products. Microorganisms, 2021, 9, 1347.	3.6	10
56	A Report on Finding a New Peptide Aldehyde from Cyanobacterium Nostoc sp. Bahar M by LC-MS and Marfey's Analysis. Iranian Journal of Biotechnology, 2019, 17, 71-78.	0.3	10
57	Discovery of varlaxins, new aeruginosin-type inhibitors of human trypsins. Organic and Biomolecular Chemistry, 2022, 20, 2681-2692.	2.8	8
58	A Unique Tryptophan Câ€Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway. Angewandte Chemie, 2016, 128, 3660-3663.	2.0	6
59	The structure and biosynthesis of heinamides A1–A3 and B1–B5, antifungal members of the laxaphycin lipopeptide family. Organic and Biomolecular Chemistry, 2021, 19, 5577-5588.	2.8	5
60	Engineering Towards Catalytic Use of Fungal Class-II Peroxidases for Dye-Decolorizing and Conversion of Lignin Model Compounds. Current Biotechnology, 2017, 6, 116-127.	0.4	5
61	Discovering Protein Kinase C Active Plants Growing in Finland Utilizing Automated Bioassay Combined to LC/MS. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	1
62	Purification of the mitochondrial calcium uniporter from beef heart and characterization of its properties. Biophysics (Russian Federation), 2010, 55, 718-722.	0.7	0