List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/436191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solution Annealing Induces Surface Chemical Reconstruction for High-Efficiency PbS Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 14274-14283.	8.0	13
2	Plasmonic Optoelectronic Memristor Enabling Fully Lightâ€Modulated Synaptic Plasticity for Neuromorphic Vision. Advanced Science, 2022, 9, e2104632.	11.2	81
3	Promoting Photoelectrochemical Water Oxidation on Ti-Doped Fe2O3 Nanowires Photoanode by O2 Plasma Treatment. Catalysts, 2021, 11, 82.	3.5	8
4	Tunable photocurrent switching behavior of a ZnO/Cu ₂ O heterojunction photodetector to realize bipolar binary photoresponse. Journal of Materials Chemistry C, 2021, 9, 6885-6893.	5.5	7
5	Control of the Cu ₂ O crystal orientation and the application of a ZnO/Cu ₂ O self-powered photodetector in visible-light-encrypted communication. Journal of Materials Chemistry C, 2021, 9, 9203-9211.	5.5	11
6	Au nanoparticle-controlled formation of metallic and oxidized Pt nanoparticles on graphitic carbon nitride nanosheets for H ₂ evolution. Dalton Transactions, 2021, 50, 9529-9539.	3.3	5
7	Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction. Applied Catalysis B: Environmental, 2020, 268, 118401.	20.2	115
8	Theoretical exploration about nitro-substituted derivatives of pyrimidine as high-energy-density materials. Journal of Molecular Modeling, 2020, 26, 5.	1.8	8
9	Updatable colorful display of vector hologram in azo–poly(9â€vinylcarbazole)–TiO 2 nanocomposite films. Journal of Applied Polymer Science, 2020, 137, 48537.	2.6	2
10	Thermal coupled photoconductivity as a tool to understand the photothermal catalytic reduction of CO2. Chinese Journal of Catalysis, 2020, 41, 154-160.	14.0	59
11	Anatase/Bronze TiO2 Heterojunction: Enhanced Photocatalysis and Prospect in Photothermal Catalysis. Chemical Research in Chinese Universities, 2020, 36, 992-999.	2.6	26
12	W-Doped TiO ₂ for photothermocatalytic CO ₂ reduction. Nanoscale, 2020, 12, 17245-17252.	5.6	37
13	A direct oriented-attachment growth of lead-chalcogenide mid-infrared nanocrystals film on amorphous substrates. Journal of Materials Chemistry C, 2020, 8, 13205-13212.	5.5	9
14	Elucidation of the electron energy structure of TiO ₂ (B) and anatase photocatalysts through analysis of electron trap density. RSC Advances, 2020, 10, 18496-18501.	3.6	11
15	Solution plasma boosts facet-dependent photoactivity of decahedral BiVO4. Chemical Engineering Journal, 2020, 397, 125381.	12.7	28
16	Enhanced Solar Photothermal Catalysis over Solution Plasma Activated TiO ₂ . Advanced Science, 2020, 7, 2000204.	11.2	89
17	Spray-processed nanoporous BiVO4 photoanodes with high charge separation efficiency for oxygen evolution. APL Materials, 2020, 8, .	5.1	6
18	Revisiting Pt/TiO ₂ photocatalysts for thermally assisted photocatalytic reduction of CO ₂ . Nanoscale, 2020, 12, 7000-7010.	5.6	73

#	Article	IF	CITATIONS
19	Quantum Dot LEDs: Over 30% External Quantum Efficiency Lightâ€Emitting Diodes by Engineering Quantum Dotâ€Assisted Energy Level Match for Hole Transport Layer (Adv. Funct. Mater. 33/2019). Advanced Functional Materials, 2019, 29, 1970226.	14.9	7
20	Pressure-enhanced electronic coupling of highly passivated quantum dot films to improve photovoltaic performance. Applied Physics Letters, 2019, 115, .	3.3	5
21	Growth of MoS2 nanoflakes and the photoelectric response properties of MoS2/TiO2 NRs compositions. Journal of Materials Science: Materials in Electronics, 2019, 30, 21465-21476.	2.2	4
22	Over 30% External Quantum Efficiency Lightâ€Emitting Diodes by Engineering Quantum Dotâ€Assisted Energy Level Match for Hole Transport Layer. Advanced Functional Materials, 2019, 29, 1808377.	14.9	240
23	Defect Passivation of Low-Temperature Processed ZnO Electron Transport Layer with Polyethylenimine for PbS Quantum Dot Photovoltaics. ACS Applied Energy Materials, 2019, 2, 1695-1701.	5.1	17
24	Luminescent perovskite nanocrystal-epoxy resin composite with high stability against water and air. Journal of Alloys and Compounds, 2019, 789, 209-214.	5.5	17
25	New Insight into the Role of Electron Transfer to O ₂ in Photocatalytic Oxidations of Acetone over TiO ₂ and the Effect of Au Cocatalyst. Journal of Physical Chemistry C, 2019, 123, 30958-30971.	3.1	16
26	Revisiting cocatalyst/TiO2 photocatalyst in blue light photothermalcatalysis. Catalysis Today, 2019, 335, 286-293.	4.4	16
27	TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Applied Catalysis B: Environmental, 2019, 243, 760-770.	20.2	132
28	Control over energy level match in Keggin polyoxometallate-TiO2 microspheres for multielectron photocatalytic reactions. Applied Catalysis B: Environmental, 2018, 234, 79-89.	20.2	46
29	Global Control of CH ₃ NH ₃ PbI ₃ Formation with Multifunctional Ionic Liquid for Perovskite Hybrid Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 10699-10705.	3.1	26
30	Fluorescent Holographic Fringes with a Surface Relief Structure Based on Merocyanine Aggregation Driven by Blue-violet Laser. Scientific Reports, 2018, 8, 3818.	3.3	10
31	Memory Devices: Photocatalytic Reduction of Graphene Oxide-TiO2 Nanocomposites for Improving Resistive-Switching Memory Behaviors (Small 29/2018). Small, 2018, 14, 1870136.	10.0	4
32	Photocatalytic Reduction of Graphene Oxide–TiO ₂ Nanocomposites for Improving Resistiveâ€&witching Memory Behaviors. Small, 2018, 14, e1801325.	10.0	58
33	Difunctional bacteriophage conjugated with photosensitizers for Candida albicans -targeting photodynamic inactivation. International Journal of Nanomedicine, 2018, Volume 13, 2199-2216.	6.7	25
34	lonic Liquidâ€Assisted Improvements in the Thermal Stability of CH ₃ NH ₃ Pbl ₃ Perovskite Photovoltaics. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800130.	2.4	27
35	Interface State-Induced Negative Differential Resistance Observed in Hybrid Perovskite Resistive Switching Memory. ACS Applied Materials & amp; Interfaces, 2018, 10, 21755-21763.	8.0	74
36	Element substitution of kesterite Cu2ZnSnS4 for efficient counter electrode of dye-sensitized solar cells. Scientific Reports, 2018, 8, 8714.	3.3	24

#	Article	IF	CITATIONS
37	Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells. Applied Surface Science, 2017, 402, 86-91.	6.1	12
38	Hybrid Cu _x O–TiO ₂ porous hollow nanospheres: preparation, characterization and photocatalytic properties. RSC Advances, 2017, 7, 31619-31627.	3.6	8
39	Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer. Solar Energy Materials and Solar Cells, 2017, 169, 264-269.	6.2	29
40	The W@WO ₃ ohmic contact induces a high-efficiency photooxidation performance. Dalton Transactions, 2017, 46, 1487-1494.	3.3	18
41	Vertical Bi ₂ Se ₃ flake array as a Pt-free counter electrode for dye-sensitized solar cells. RSC Advances, 2017, 7, 51958-51964.	3.6	4
42	Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect. Applied Surface Science, 2017, 391, 654-661.	6.1	85
43	Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO2 under visible-light. Applied Surface Science, 2017, 396, 26-35.	6.1	28
44	Increased open•ircuit voltage of ZnO nanowire/PbS quantum dot bulk heterojunction solar cells with solutionâ€deposited Mg(OH) ₂ interlayer. Physica Status Solidi - Rapid Research Letters, 2016, 10, 745-748.	2.4	19
45	Thermal Evaporation of Sb ₂ Se ₃ as Novel Counter Electrode for Dye ensitized Solar Cells. ChemistrySelect, 2016, 1, 1824-1831.	1.5	6
46	Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory. Scientific Reports, 2016, 6, 36701.	3.3	22
47	Influence of a solution-deposited rutile layer on the morphology of TiO ₂ nanorod arrays and the performance of nanorod-based dye-sensitized solar cells. RSC Advances, 2016, 6, 10450-10455.	3.6	10
48	Ultrasonic spray pyrolysis assembly of a TiO2–WO3–Pt multi-heterojunction microsphere photocatalyst using highly crystalline WO3 nanosheets: less is better. New Journal of Chemistry, 2016, 40, 3225-3232.	2.8	8
49	Efficiency enhanced rutile TiO2 nanowire solar cells based on an Sb2S3 absorber and a CuI hole conductor. New Journal of Chemistry, 2015, 39, 7243-7250.	2.8	7
50	Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO ₂ Nanocomposite Films. Journal of Physical Chemistry C, 2015, 119, 18559-18566.	3.1	17
51	Layer-by-Layer Assembly of Stable Aqueous Quantum Dots for Luminescent Planar Plate. ACS Applied Materials & Interfaces, 2015, 7, 14770-14777.	8.0	12
52	Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO ₂ (B) nanotube heterojunction. Dalton Transactions, 2015, 44, 13331-13339.	3.3	29
53	Genetic and Epigenetic Changes in Somatic Hybrid Introgression Lines Between Wheat and Tall Wheatgrass. Genetics, 2015, 199, 1035-1045.	2.9	33
54	Simple Ethanol Impregnation Treatment Can Enhance Photocatalytic Activity of TiO ₂ Nanoparticles under Visible-Light Irradiation. ACS Applied Materials & Interfaces, 2015, 7, 7752-7758.	8.0	78

#	Article	IF	CITATIONS
55	Bilayer TiO ₂ photoanode consisting of a nanowire–nanoparticle bottom layer and a spherical voids scattering layer for dye-sensitized solar cells. New Journal of Chemistry, 2015, 39, 4845-4851.	2.8	23
56	Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction. Applied Surface Science, 2015, 358, 28-45.	6.1	115
57	Vacuum heat treated titanate nanotubes for visible-light photocatalysis. New Journal of Chemistry, 2015, 39, 1281-1286.	2.8	9
58	Characterization of high molecular weight glutenin subunit genes from the Ns genome of Psathyrostachys juncea. Development Genes and Evolution, 2014, 224, 189-196.	0.9	6
59	Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation. Nanoscale, 2014, 6, 5329.	5.6	46
60	Enhanced electrochromic properties of a TiO ₂ nanowire array via decoration with anatase nanoparticles. Journal of Materials Chemistry C, 2014, 2, 7891.	5.5	47
61	Induced and Constitutive DNA Methylation in a Salinity-Tolerant Wheat Introgression Line. Plant and Cell Physiology, 2014, 55, 1354-1365.	3.1	111
62	Rutile TiO2 nanowire array infiltrated with anatase nanoparticles as photoanode for dye-sensitized solar cells: enhanced cell performance via the rutile–anatase heterojunction. Journal of Materials Chemistry A, 2013, 1, 3309.	10.3	49
63	Color tuning of (K1â~'x,Nax)SrPO4:0.005Eu2+, yTb3+ blue-emitting phosphors via crystal field modulation and energy transfer. Journal of Materials Chemistry C, 2013, 1, 4570.	5.5	84
64	WRKY Transcription Factors in Wheat and Their Induction by Biotic and Abiotic Stress. Plant Molecular Biology Reporter, 2013, 31, 1053-1067.	1.8	73
65	Waveband-dependent photochemical processing of graphene oxide in fabricating reduced graphene oxide film and graphene oxide–Ag nanoparticles film. RSC Advances, 2013, 4, 2404-2408.	3.6	25
66	Growth of single-crystalline rutile TiO2 nanowire array on titanate nanosheet film for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 6389.	6.7	62
67	Thermally Stable Pyrochlore <scp><scp>Y₂Ti₂O₇</scp></scp> : <scp><scp>Eu³⁺</scp></scp> Orange–Red Emitting Phosphors. Journal of the American Ceramic Society, 2012, 95, 658-662.	3.8	36
68	Influence of Flux on Morphology and Luminescence Properties of Phosphors: A Case Study on <scp><scp>Y</scp></scp> _{1.55} <scp><scp>Ti</scp></scp> ₂ <scp><scp>O</scp> Journal of the American Ceramic Society, 2012, 95, 1447-1453.</scp>	:p> <3⊾ø b>7∘	ab>:0.45 <s< td=""></s<>
69	Hydrothermal Growth of Layered Titanate Nanosheet Arrays on Titanium Foil and Their Topotactic Transformation to Heterostructured TiO ₂ Photocatalysts. Journal of Physical Chemistry C, 2011, 115, 22276-22285.	3.1	111
70	Heteroepitaxial Growth and Spatially Resolved Cathodoluminescence of ZnO/MgZnO Coaxial Nanorod Arrays. Journal of Physical Chemistry C, 2010, 114, 16148-16152.	3.1	31
71	Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films. Applied Physics Letters, 2009, 94, .	3.3	41
72	Microphotoluminescence investigation on single ZnO microrods with different morphologies. Journal of Applied Physics, 2009, 105, .	2.5	2