
Isodiana Crupi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4361836/publications.pdf Version: 2024-02-01

ISODIANA CDIIDI

#	Article	IF	CITATIONS
1	Density of states characterization of TiO2 films deposited by pulsed laser deposition for heterojunction solar cells. Nano Research, 2022, 15, 4048-4057.	5.8	1
2	Empowering Photovoltaics with Smart Light Management Technologies. , 2022, , 1165-1248.		1
3	Characterization of the defect density states in MoOx for c-Si solar cell applications. Solid-State Electronics, 2021, 185, 108135.	0.8	3
4	Custom measurement system for memristor characterisation. Solid-State Electronics, 2021, 186, 108049.	0.8	5
5	Effect of the Si doping on the properties of AZO/SiC/Si heterojunctions grown by low temperature pulsed laser deposition. Semiconductor Science and Technology, 2021, 36, 015001.	1.0	2
6	Light trapping by plasmonic nanoparticles. , 2020, , 277-313.		5
7	Sub-gap defect density characterization of molybdenum oxide: An annealing study for solar cell applications. Nano Research, 2020, 13, 3416-3424.	5.8	17
8	Progress in Violet Light-Emitting Diodes Based on ZnO/GaN Heterojunction. Electronics (Switzerland), 2020, 9, 991.	1.8	12
9	Analysis of Transition Metal Oxides based Heterojunction Solar Cells with S-shaped J-V curves. , 2020, ,		2
10	Plasmonic nanostructures for light trapping in thin-film solar cells. Materials Science in Semiconductor Processing, 2019, 92, 10-18.	1.9	59
11	Current Spreading Length and Injection Efficiency in ZnO/GaN-Based Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2019, 66, 4811-4816.	1.6	6
12	Improved Cu2O/AZO Heterojunction by Inserting a Thin ZnO Interlayer Grown by Pulsed Laser Deposition. Journal of Electronic Materials, 2019, 48, 4381-4388.	1.0	14
13	Chemical Bath Deposition as a Simple Way to Grow Isolated and Coalesced ZnO Nanorods for Light-Emitting Diodes Fabrication. , 2018, , .		1
14	Sb-implanted ZnO ultra-thin films. Materials Science in Semiconductor Processing, 2017, 69, 32-35.	1.9	3
15	Robustness and electrical reliability of AZO/Ag/AZO thin film after bending stress. Solar Energy Materials and Solar Cells, 2017, 165, 88-93.	3.0	44
16	Ion irradiation of AZO thin films for flexible electronics. Nuclear Instruments & Methods in Physics Research B, 2017, 392, 14-20.	0.6	13
17	Growth kinetics of colloidal Ge nanocrystals for light harvesters. RSC Advances, 2016, 6, 38454-38462.	1.7	3
18	Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application. Scientific Reports, 2016, 6, 22481.	1.6	50

Isodiana Crupi

#	Article	IF	CITATIONS
19	Sputtered cuprous oxide thin films and nitrogen doping by ion implantation. Thin Solid Films, 2016, 600, 71-75.	0.8	11
20	Nanostructured CdO thin films for water treatments. Materials Science in Semiconductor Processing, 2016, 42, 85-88.	1.9	18
21	Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells. Applied Physics Letters, 2015, 106, .	1.5	21
22	Size dependent light absorption modulation and enhanced carrier transport in germanium quantum dots devices. Solar Energy Materials and Solar Cells, 2015, 135, 22-28.	3.0	32
23	Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids. Nanotechnology, 2015, 26, 135202.	1.3	51
24	Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition. Applied Physics Letters, 2015, 106, .	1.5	42
25	Plasmonic and diffractive nanostructures for light trapping—an experimental comparison. Optica, 2015, 2, 194.	4.8	40
26	Photocurrent enhancement in thin a-Si:H solar cells via plasmonic light trapping. , 2014, , .		0
27	Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors. Optics Express, 2014, 22, A1059.	1.7	60
28	TCO/Ag/TCO transparent electrodes for solar cells application. Applied Physics A: Materials Science and Processing, 2014, 116, 1287-1291.	1.1	50
29	Colloidal plasmonic back reflectors for light trapping in solar cells. Nanoscale, 2014, 6, 4796-4805.	2.8	74
30	Light harvesting with Ge quantum dots embedded in SiO2 or Si3N4. Journal of Applied Physics, 2014, 115,	1.1	27
31	Structural, Electronic, and Electrical Properties of an Undoped n-Type CdO Thin Film with High Electron Concentration. Journal of Physical Chemistry C, 2014, 118, 15019-15026.	1.5	38
32	Colloidal Self-assembled Nanosphere Arrays for Plasmon-enhanced Light Trapping in Thin Film Silicon Solar Cells. Energy Procedia, 2014, 44, 184-191.	1.8	9
33	Schottky barrier height tuning by Hybrid organic-inorganic multilayers. Materials Research Society Symposia Proceedings, 2014, 1660, 19.	0.1	2
34	Room-temperature efficient light detection by amorphous Ge quantum wells. Nanoscale Research Letters, 2013, 8, 128.	3.1	28
35	Role of Ge nanoclusters in the performance of photodetectors compatible with Si technology. Thin Solid Films, 2013, 548, 551-555.	0.8	11
36	Nanostructuring thin Au films on transparent conductive oxide substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 533-541.	1.7	9

Isodiana Crupi

#	Article	IF	CITATIONS
37	Laser irradiation of ZnO:Al/Ag/ZnO:Al multilayers for electrical isolation in thin film photovoltaics. Nanoscale Research Letters, 2013, 8, 392.	3.1	11
38	Boron doping of silicon rich carbides: Electrical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 551-558.	1.7	18
39	Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties. Nanotechnology, 2013, 24, 265601.	1.3	77
40	Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation. Applied Physics Letters, 2013, 103, 221902.	1.5	2
41	Polymer/metal hybrid multilayers modified Schottky devices. Applied Physics Letters, 2013, 103, 193117.	1.5	8
42	Light absorption and conversion in solar cell based on Si:O alloy. Journal of Applied Physics, 2013, 114, 053507.	1.1	7
43	Rayleighâ€instabilityâ€driven dewetting of thin Au and Ag films on indium–tinâ€oxide surface under nanosecond laser irradiations. Micro and Nano Letters, 2013, 8, 127-130.	0.6	15
44	Transient photoresponse and incident power dependence of high-efficiency germanium quantum dot photodetectors. Journal of Applied Physics, 2012, 112, .	1.1	39
45	Fast, high-efficiency Germanium quantum dot photodetectors. , 2012, , .		1
46	Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell. Thin Solid Films, 2012, 520, 4036-4040.	0.8	5
47	Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes. Thin Solid Films, 2012, 520, 4432-4435.	0.8	104
48	Formation and Evolution of Nanoscale Metal Structures on ITO Surface by Nanosecond Laser Irradiations of Thin Au and Ag Films. Science of Advanced Materials, 2012, 4, 708-718.	0.1	44
49	High-efficiency silicon-compatible photodetectors based on Ge quantum dots. Applied Physics Letters, 2011, 98, .	1.5	58
50	Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface. Applied Physics Letters, 2011, 98, 023101.	1.5	36
51	Anomalous and normal Hall effect in hydrogenated amorphous Si prepared by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2010, 107, 043503.	1.1	7
52	Compact instrumentation for radiation tolerance test of flash memories in space environment. , 2010, , .		1
53	Light absorption and electrical transport in Si:O alloys for photovoltaics. Journal of Applied Physics, 2010, 108, .	1.1	9
54	Pd/Au/SiC Nanostructured Diodes for Nanoelectronics: Room Temperature Electrical Properties. IEEE Nanotechnology Magazine, 2010, 9, 414-421.	1.1	36

ISODIANA CRUPI

#	Article	IF	CITATIONS
55	Room-Temperature Electrical Characteristics of Pdâ^•SiC Diodes with Embedded Au Nanoparticles at the Interface. , 2010, , .		2
56	Radiation Tolerance of NROM Embedded Products. IEEE Transactions on Nuclear Science, 2010, 57, 2309-2317.	1.2	14
57	Hot carrier effects in n-MOSFETs with SiO2/HfO2/HfSiO gate stack and TaN metal gate. Microelectronic Engineering, 2009, 86, 1-3.	1.1	8
58	Light absorption in silicon quantum dots embedded in silica. Journal of Applied Physics, 2009, 106, .	1.1	90
59	Effect of ion irradiation on the stability of amorphous Ge2Sb2Te5 thin films. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2511-2514.	0.6	15
60	Role of the strain in the epitaxial regrowth rate of heavily doped amorphous Si films. Applied Physics Letters, 2008, 93, .	1.5	9
61	Distribution and generation of traps in SiO2/Al2O3 gate stacks. Microelectronics Reliability, 2007, 47, 525-527.	0.9	5
62	Silicon-Based Light-Emitting Devices: Properties and Applications of Crystalline, Amorphous and Er-Doped Nanoclusters. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1596-1606.	1.9	37
63	Profiling of traps in SiO2/Al2O3 gate stack by the charge pumping technique. Materials Science in Semiconductor Processing, 2006, 9, 889-891.	1.9	Ο
64	Electroluminescence and transport properties in amorphous silicon nanostructures. Nanotechnology, 2006, 17, 1428-1436.	1.3	68
65	Photonic-crystal silicon-nanocluster light-emitting device. Applied Physics Letters, 2006, 88, 033501.	1.5	37
66	Energy and Spatial Distribution of Traps in \$hbox{SiO}_{2}/hbox{Al}_{2}hbox{O}_{3}\$ nMOSFETs. IEEE Transactions on Device and Materials Reliability, 2006, 6, 509-516.	1.5	20
67	Carrier-induced quenching processes on the erbium luminescence in silicon nanocluster devices. Physical Review B, 2006, 73, .	1.1	30
68	Effects of partial self-ordering of Si dots formed by chemical vapor deposition on the threshold voltage window distribution of Si nanocrystal memories. Journal of Applied Physics, 2006, 100, 086104.	1.1	8
69	Improvement of the P/E window in nanocrystal memories by the use of high-k materials in the control dielectric. Microelectronics Reliability, 2005, 45, 895-898.	0.9	1
70	Multi-bit storage through Si nanocrystals embedded in SiO2. Microelectronic Engineering, 2004, 72, 411-414.	1.1	12
71	Nanocrystal memories for FLASH device applications. Solid-State Electronics, 2004, 48, 1483-1488.	0.8	31
72	Programming options for nanocrystal MOS memories. Materials Science and Engineering C, 2003, 23, 687-689.	3.8	1

ISODIANA CRUPI

#	Article	IF	CITATIONS
73	Memory effects in MOS devices based on Si quantum dots. Materials Science and Engineering C, 2003, 23, 33-36.	3.8	10
74	Peculiar aspects of nanocrystal memory cells: data and extrapolations. IEEE Nanotechnology Magazine, 2003, 2, 319-323.	1.1	15
75	Nanocrystal MOS with Silicon-Rich Oxide. Solid State Phenomena, 2002, 82-84, 675-680.	0.3	0
76	Memory Effects in Single-Electron Nanostructures. Solid State Phenomena, 2002, 82-84, 669-674.	0.3	0
77	Nanocrystal MOS Memories Obtained by LPCVD Deposition of Si Nanograins. Solid State Phenomena, 2002, 82-84, 663-668.	0.3	1
78	Location of holes in silicon-rich oxide as memory states. Applied Physics Letters, 2002, 81, 3591-3593.	1,5	3
79	Reliability and Retention Study of Nanocrystal Cell Array. , 2002, , .		8
80	Nanocrystal metal-oxide-semiconductor memories obtained by chemical vapor deposition of Si nanocrystals. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2075.	1.6	34
81	Residual Crystalline Silicon Phase in Silicon-Rich-Oxide Films Subjected to High Temperature Annealing. Journal of the Electrochemical Society, 2002, 149, G376.	1.3	17
82	Electrical and structural characterization of metal–oxide–semiconductor capacitors with silicon rich oxide. Journal of Applied Physics, 2001, 89, 5552-5558.	1.1	20
83	Memory effects in MOS capacitors with silicon quantum dots. Materials Science and Engineering C, 2001, 15, 283-285.	3.8	2
84	Characterization of soft breakdown in thin oxide NMOSFETs based on the analysis of the substrate current. IEEE Transactions on Electron Devices, 2001, 48, 1109-1113.	1.6	12
85	Reduction of thermal damage in ultrathin gate oxides after intrinsic dielectric breakdown. Applied Physics Letters, 2001, 79, 1522-1524.	1.5	15
86	Memory effects in MOS capacitors with silicon rich oxide insulators. Materials Research Society Symposia Proceedings, 2000, 609, 2911.	0.1	0
87	Effects of Nitridation by N2O or No on the Electrical Properties of Thin Gate or Tunnel Oxides. Materials Research Society Symposia Proceedings, 2000, 611, 1.	0.1	0
88	Origin of the substrate current after soft-breakdown in thin oxide n-MOSFETs. , 1999, , .		2
89	Localized charge storage in nanocrystal memories: feasibility of a multi-bit cell. , 0, , .		7
90	How far will silicon nanocrystals push the scaling limits of NVMs technologies?. , 0, , .		52

#	Article	IF	CITATIONS
91	Effect of high-k materials in the control dielectric stack of nanocrystal memories. , 0, , .		2