Yukiko U Inoue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4361771/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Cadherin-6 Mediates Axon-Target Matching in a Non-Image-Forming Visual Circuit. Neuron, 2011, 71, 632-639.	8.1	137
2	Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development (Cambridge), 2009, 136, 2049-2058.	2.5	106
3	Specification of Spatial Identities of Cerebellar Neuron Progenitors by Ptf1a and Atoh1 for Proper Production of GABAergic and Glutamatergic Neurons. Journal of Neuroscience, 2014, 34, 4786-4800.	3.6	99
4	Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nature Communications, 2014, 5, 3337.	12.8	92
5	Sox10- Venus mice: a new tool for real-time labeling of neural crest lineage cells and oligodendrocytes. Molecular Brain, 2010, 3, 31.	2.6	70
6	SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers. Molecular Cell, 2015, 59, 685-697.	9.7	50
7	Meis1 Coordinates Cerebellar Granule Cell Development by Regulating Pax6 Transcription, BMP Signaling and Atoh1 Degradation. Journal of Neuroscience, 2018, 38, 1277-1294.	3.6	49
8	Origins of oligodendrocytes in the cerebellum, whose development is controlled by the transcription factor, Sox9. Mechanisms of Development, 2016, 140, 25-40.	1.7	31
9	A novel RyR1-selective inhibitor prevents and rescues sudden death in mouse models of malignant hyperthermia and heat stroke. Nature Communications, 2021, 12, 4293.	12.8	26
10	Analysis of mouse Cdh6 gene regulation by transgenesis of modified bacterial artificial chromosomes. Developmental Biology, 2008, 315, 506-520.	2.0	24
11	Cadherin-6 gene regulatory patterns in the postnatal mouse brain. Molecular and Cellular Neurosciences, 2008, 39, 95-104.	2.2	20
12	DSCAM regulates delamination of neurons in the developing midbrain. Science Advances, 2020, 6, .	10.3	18
13	Genetic labeling of mouse rhombomeres by Cadherin-6::EGFP-BAC transgenesis underscores the role of cadherins in hindbrain compartmentalization. Neuroscience Research, 2009, 63, 2-9.	1.9	12
14	Additive dominant effect of a SOX10 mutation underlies a complex phenotype of PCWH. Neurobiology of Disease, 2015, 80, 1-14.	4.4	12
15	The nSMase2/Smpd3 gene modulates the severity of muscular dystrophy and the emotional stress response in mdx mice. BMC Medicine, 2020, 18, 343.	5.5	12
16	Muscle pathophysiology in mouse models of musculocontractural Ehlers-Danlos syndrome due to CHST14 mutations (mcEDS-CHST14), generated through CRISPR/Cas9-mediated genomic editing. DMM Disease Models and Mechanisms, 2021, , .	2.4	11
17	A Sharp Cadherin-6 Gene Expression Boundary in the Developing Mouse Cortical Plate Demarcates the Future Functional Areal Border. Cerebral Cortex, 2013, 23, 2293-2308.	2.9	10
18	Brain enhancer activities at the gene-poor 5p14.1 autism-associated locus. Scientific Reports, 2016, 6, 31227.	3.3	9

ΥUKIKO U INOUE

#	Article	IF	CITATIONS
19	Redundant type II cadherins define neuroepithelial cell states for cytoarchitectonic robustness. Communications Biology, 2020, 3, 574.	4.4	9
20	An Optimized Preparation Method for Long ssDNA Donors to Facilitate Quick Knock-In Mouse Generation. Cells, 2021, 10, 1076.	4.1	9
21	Bacterial artificial chromosomes as analytical basis for gene transcriptional machineries. Transgenic Research, 2011, 20, 913-924.	2.4	7
22	Generation of Pax6-IRES-EGFP knock-in mouse via the cloning-free CRISPR/Cas9 system to reliably visualize neurodevelopmental dynamics. Neuroscience Research, 2018, 132, 1-7.	1.9	7
23	Classic cadherin expressions balance postnatal neuronal positioning and dendrite dynamics to elaborate the specific cytoarchitecture of the mouse cortical area. Neuroscience Research, 2016, 105, 49-64.	1.9	6
24	Myopathy Associated With Dermatan Sulfate-Deficient Decorin and Myostatin in Musculocontractural Ehlers-Danlos Syndrome: A Mouse Model Investigation. Frontiers in Cell and Developmental Biology, 2021, 9, 695021.	3.7	5
25	Novel EGFP reporter cell and mouse models for sensitive imaging and quantification of exon skipping. Scientific Reports, 2020, 10, 10110.	3.3	3
26	Detection of REST expression in the testis using epitopeâ€ŧag knockâ€ɨn mice generated by genome editing. Developmental Dynamics, 2021, , .	1.8	3
27	Targeting neurons with functional oxytocin receptors: A novel set of simple knock-in mouse lines for oxytocin receptor visualization and manipulation. ENeuro, 2022, , ENEURO.0423-21.2022.	1.9	3
28	Gene regulatory patterns for Cdh6 expression identify divisible genetic compartments in the postnatal mouse cerebral cortex. Neuroscience Research, 2011, 71, e229.	1.9	0