Huajun Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4361274/publications.pdf

Version: 2024-02-01

66234 60497 7,005 81 42 81 citations h-index g-index papers 82 82 82 6165 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An overview on engineering the surface area and porosity of biochar. Science of the Total Environment, 2021, 763, 144204.	3.9	434
2	Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Applied Surface Science, 2013, 279, 432-440.	3.1	418
3	Biochar stability assessment methods: A review. Science of the Total Environment, 2019, 647, 210-222.	3.9	352
4	Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Advances in Colloid and Interface Science, 2013, 195-196, 19-40.	7.0	306
5	The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresource Technology, 2016, 200, 991-998.	4.8	295
6	An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology, 2018, 270, 627-642.	4.8	275
7	Recent progress in the direct liquefaction of typical biomass. Progress in Energy and Combustion Science, 2015, 49, 59-80.	15.8	249
8	Nitrogen containing functional groups of biochar: An overview. Bioresource Technology, 2020, 298, 122286.	4.8	249
9	Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresource Technology, 2011, 102, 4104-4110.	4.8	227
10	Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. Journal of Analytical and Applied Pyrolysis, 2017, 125, 61-68.	2.6	225
11	Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol. Fuel Processing Technology, 2011, 92, 147-153.	3.7	203
12	Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Transactions of Nonferrous Metals Society of China, 2012, 22, 1470-1477.	1.7	174
13	Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption. Applied Surface Science, 2015, 346, 223-231.	3.1	171
14	Nitrogen in bio-oil produced from hydrothermal liquefaction of biomass: A review. Chemical Engineering Journal, 2020, 401, 126030.	6.6	165
15	Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge. Bioresource Technology, 2011, 102, 10346-10351.	4.8	160
16	Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge. Energy, 2013, 56, 52-60.	4.5	156
17	Co-pelletization of sewage sludge and biomass: The density and hardness of pellet. Bioresource Technology, 2014, 166, 435-443.	4.8	146
18	Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents. Energy, 2011, 36, 6406-6412.	4.5	141

#	Article	IF	CITATIONS
19	A review on pyrolysis of protein-rich biomass: Nitrogen transformation. Bioresource Technology, 2020, 315, 123801.	4.8	131
20	Bio-oil upgrading by emulsification/microemulsification: A review. Energy, 2018, 161, 214-232.	4.5	129
21	The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol. Bioresource Technology, 2010, 101, 2860-2866.	4.8	124
22	The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresource Technology, 2014, 167, 144-150.	4.8	122
23	Characterization and application of bio-chars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge. Fuel Processing Technology, 2015, 129, 8-14.	3.7	122
24	Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol–water). Fuel Processing Technology, 2013, 112, 93-99.	3.7	104
25	Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere, 2015, 120, 645-652.	4.2	100
26	The comparison of the migration and transformation behavior of heavy metals during pyrolysis and liquefaction of municipal sewage sludge, paper mill sludge, and slaughterhouse sludge. Bioresource Technology, 2015, 198, 16-22.	4.8	90
27	Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane. Journal of Membrane Science, 2010, 365, 138-144.	4.1	88
28	Thermochemical liquefaction characteristics of sewage sludge in different organic solvents. Journal of Analytical and Applied Pyrolysis, 2014, 109, 176-184.	2.6	86
29	Thermochemical liquefaction of rice husk for bio-oil production with sub- and supercritical ethanol as solvent. Journal of Analytical and Applied Pyrolysis, 2013, 102, 60-67.	2.6	81
30	Co-culture of fungi-microalgae consortium for wastewater treatment: A review. Bioresource Technology, 2021, 330, 125008.	4.8	81
31	Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations. Science of the Total Environment, 2019, 664, 11-23.	3.9	69
32	Co-liquefaction of microalgae and synthetic polymer mixture in sub- and supercritical ethanol. Fuel Processing Technology, 2012, 93, 35-44.	3.7	67
33	Liquefaction of sewage sludge in ethanol-water mixed solvents for bio-oil and biochar products. Energy, 2018, 148, 629-641.	4.5	67
34	Study on the hydrothermal carbonization of swine manure: The effect of process parameters on the yield/properties of hydrochar and process water. Journal of Analytical and Applied Pyrolysis, 2019, 144, 104692.	2.6	63
35	Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities. Science of the Total Environment, 2020, 748, 142383.	3.9	63
36	Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresource Technology, 2016, 200, 320-327.	4.8	58

#	Article	IF	Citations
37	Characterization of liquefaction bio-oil from sewage sludge and its solubilization in diesel microemulsion. Energy, 2015, 82, 218-228.	4.5	55
38	Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust. Energy, 2015, 91, 441-450.	4.5	55
39	Study on the solubilization capacity of bio-oil in diesel by microemulsion technology with Span80 as surfactant. Fuel Processing Technology, 2014, 118, 141-147.	3.7	53
40	Co-liquefaction of sewage sludge and rice straw/wood sawdust: The effect of process parameters on the yields/properties of bio-oil and biochar products. Energy, 2019, 173, 140-150.	4.5	53
41	Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China. Transactions of Nonferrous Metals Society of China, 2017, 27, 2249-2259.	1.7	52
42	Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions. Energy, 2018, 154, 110-118.	4.5	51
43	Valorization of the aqueous phase produced from wet and dry thermochemical processing biomass: A review. Journal of Cleaner Production, 2021, 294, 126238.	4.6	48
44	Discovery of a butyrylcholinesterase-specific probe via a structure-based design strategy. Chemical Communications, 2017, 53, 3952-3955.	2.2	42
45	An integrated treatment of domestic wastewater using sequencing batch biofilm reactor combined with vertical flow constructed wetland and its artificial neural network simulation study. Ecological Engineering, 2014, 64, 18-26.	1.6	39
46	The comparison of oxidative thermokinetics between emulsion and microemulsion diesel fuel. Energy Conversion and Management, 2015, 101, 364-370.	4.4	37
47	Highly efficient conversion of camphor tree sawdust into bio-oil and biochar products by liquefaction in ethanol-water cosolvent. Journal of Analytical and Applied Pyrolysis, 2018, 136, 186-198.	2.6	34
48	Copper-modified TS-1 catalyzed hydroxylation of phenol with hydrogen peroxide as the oxidant. RSC Advances, 2016, 6, 101071-101078.	1.7	32
49	Extraction and purification of laccase by employing a novel rhamnolipid reversed micellar system. Process Biochemistry, 2012, 47, 742-748.	1.8	31
50	Upgrading Sewage Sludge Liquefaction Bio-Oil by Microemulsification: The Effect of Ethanol as Polar Phase on Solubilization Performance and Fuel Properties. Energy & Energy & 2017, 31, 1574-1582.	2.5	29
51	Co-liquefaction of Chlorella and soybean straw for production of bio-crude: Effects of reusing aqueous phase as the reaction medium. Science of the Total Environment, 2022, 820, 153348.	3.9	25
52	Surfactant assisted upgrading fuel properties of waste cooking oil biodiesel. Journal of Cleaner Production, 2019, 210, 1376-1384.	4.6	24
53	Efficient conversion of sewage sludge into hydrochar by microwave-assisted hydrothermal carbonization. Science of the Total Environment, 2022, 803, 149874.	3.9	23
54	Studies on the solubilization of aqueous methylene blue in surfactant using MEUF. Separation and Purification Technology, 2012, 98, 497-502.	3.9	22

#	Article	IF	Citations
55	Microwave-assisted hydrothermal carbonization of pig feces for the production of hydrochar. Journal of Supercritical Fluids, 2020, 162, 104858.	1.6	21
56	The Formation of Rhamnolipid-Based Water-Containing Castor Oil/Diesel Microemulsions and Their Potentiality as Green Fuels. Energy & Energ	2.5	20
57	Meat & Description of Cleaner Production, 2019, 238, 117960.	4.6	19
58	Residue analysis of tetraniliprole in rice and related environmental samples by HPLC/MS. Microchemical Journal, 2019, 150, 104168.	2.3	19
59	Discovery of Specific Nonpeptide Probe for Chymotrypsin via Molecular Docking-Based Virtual Screening and the Application. ACS Applied Bio Materials, 2018, 1, 310-317.	2.3	18
60	Effect of rhamnolipids on cadmium adsorption by Penicillium simplicissimum. Journal of Central South University, 2012, 19, 1073-1080.	1.2	16
61	Adsorption isotherms, degradation kinetics, and leaching behaviors of cyanogen and hydrogen cyanide in eight texturally different agricultural soils from China. Ecotoxicology and Environmental Safety, 2019, 185, 109704.	2.9	16
62	The pseudo-ternary phase diagrams and properties of anionic–nonionic mixed surfactant reverse micellar systems. Journal of Molecular Liquids, 2015, 203, 181-186.	2.3	15
63	Speciation of Main Nutrients (N/P/K) in Hydrochars Produced from the Hydrothermal Carbonization of Swine Manure under Different Reaction Temperatures. Materials, 2021, 14, 4114.	1.3	15
64	Synchronous extraction of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium fermentation broth. Separation and Purification Technology, 2014, 123, 164-170.	3.9	14
65	Effects of rice straw/wood sawdust addition on the transport/conversion behaviors of heavy metals during the liquefaction of sewage sludge. Journal of Environmental Management, 2020, 270, 110824.	3.8	14
66	Transformation characteristics of polycyclic aromatic hydrocarbons during hydrothermal liquefaction of sewage sludge. Journal of Supercritical Fluids, 2021, 170, 105158.	1.6	14
67	Pyrolysis of different sewage sludge feedstocks for biochar products: Characterization and application. Journal of Central South University, 2020, 27, 3302-3319.	1.2	14
68	A comparison study of applying natural iron minerals and zero-valent metals as Fenton-like catalysts for the removal of imidacloprid. Environmental Science and Pollution Research, 2021, 28, 42217-42229.	2.7	13
69	Distribution behavior and risk assessment of metals in bio-oils produced by liquefaction/pyrolysis of sewage sludge. Environmental Science and Pollution Research, 2015, 22, 18945-18955.	2.7	12
70	Effect of different surfactants on removal efficiency of heavy metals in sewage sludge treated by a novel method combining bio-acidification with Fenton oxidation. Journal of Central South University, 2014, 21, 4623-4629.	1.2	10
71	The impact of the particle size of meat and bone meal (MBM) incineration ash on phosphate precipitation and phosphorus recovery. Journal of Environmental Chemical Engineering, 2021, 9, 105247.	3.3	9
72	Dysregulated expression of mRNA and SNP in pulmonary artery remodeling in ascites syndrome in broilers. Poultry Science, 2021, 100, 100877.	1.5	7

#	Article	IF	CITATIONS
73	Pivotal role of water molecules in the photodegradation of pymetrozine: New insights for developing green pesticides. Journal of Hazardous Materials, 2022, 423, 127197.	6.5	7
74	Precipitation and Recovery of Cellulase using Biosurfactant. Separation Science and Technology, 2014, 49, 2249-2254.	1.3	6
75	Distribution and transformation behaviors of heavy metals during liquefaction process of sewage sludge in ethanol-water mixed solvents. Journal of Central South University, 2019, 26, 2771-2784.	1.2	6
76	Integrated evaluation system under randomness and fuzziness for groundwater contamination risk assessment in a little town, Central China. Journal of Central South University, 2014, 21, 1044-1050.	1.2	4
77	Controllable synthesis of monodisperse nonspherical colloidal particles with cavity structures. Journal of Polymer Science Part A, 2019, 57, 1645-1652.	2.5	4
78	Evaluation of the disappearance of cyanogen and hydrogen cyanide in different soil types using gas chromatography–mass spectrometry. Microchemical Journal, 2019, 151, 104253.	2.3	4
79	Liquefaction of Biomass for Bio-oil Products. , 2017, , 231-250.		3
80	Laccase behavior in the microenvironment of water core within a biosurfactant-based reversed micelles system rhamnolipid/n-hexanol/isooctane/water. Surface and Interface Analysis, 2015, 47, 491-497.	0.8	2
81	Advances in Hydrothermal Carbonization of Livestock Manure. Nanotechnology in the Life Sciences, 2020, , 183-205.	0.4	1