Emanuel DiCicco-Bloom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/43611/publications.pdf

Version: 2024-02-01

48 papers

3,231 citations

172457 29 h-index 206112 48 g-index

50 all docs 50 docs citations

50 times ranked

3826 citing authors

#	Article	IF	CITATIONS
1	Autism NPCs from both idiopathic and CNV 16p11.2 deletion patients exhibit dysregulation of proliferation and mitogenic responses. Stem Cell Reports, 2022, 17, 1380-1394.	4.8	10
2	Developmental Role of Adenosine Kinase in the Cerebellum. ENeuro, 2021, 8, ENEURO.0011-21.2021.	1.9	7
3	Engrailedâ€2 is a cell autonomous regulator of neurogenesis in cultured hippocampal neural stem cells. Developmental Neurobiology, 2021, 81, 724-735.	3.0	1
4	Engrailed 2 deficiency and chronic stress alter avoidance and motivation behaviors. Behavioural Brain Research, 2021, 413, 113466.	2.2	1
5	Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. Advances in Neurobiology, 2020, 25, 109-153.	1.8	37
6	Using iPSC-Based Models to Understand the Signaling and Cellular Phenotypes in Idiopathic Autism and 16p11.2 Derived Neurons. Advances in Neurobiology, 2020, 25, 79-107.	1.8	2
7	Rapid Detection of Neurodevelopmental Phenotypes in Human Neural Precursor Cells (NPCs). Journal of Visualized Experiments, 2018, , .	0.3	9
8	Using Human Induced Neural Precursor Cells to Define Early Neurodevelopmental Defects in Syndromic and Idiopathic Autism. Current Pharmacology Reports, 2018, 4, 422-435.	3.0	2
9	Altered salt taste response and increased tongue epithelium Scnna1 expression in adult Engrailed-2 null mice. Physiology and Behavior, 2018, 194, 410-419.	2.1	8
10	Spatial gene expression analysis of neuroanatomical differences in mouse models. NeuroImage, 2017, 163, 220-230.	4.2	18
11	Valproic Acid Exposure during Early Postnatal Gliogenesis Leads to Autistic-like Behaviors in Rats. Clinical Psychopharmacology and Neuroscience, 2016, 14, 338-344.	2.0	34
12	Spinal Microgliosis Due to Resident Microglial Proliferation Is Required for Pain Hypersensitivity after Peripheral Nerve Injury. Cell Reports, 2016, 16, 605-614.	6.4	187
13	Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice. Physiology and Behavior, 2016, 161, 90-98.	2.1	40
14	Aryl hydrocarbon receptor deletion in cerebellar granule neuron precursors impairs neurogenesis. Developmental Neurobiology, 2016, 76, 533-550.	3.0	37
15	Valproic acid stimulates proliferation of glial precursors during cortical gliogenesis in developing rat. Developmental Neurobiology, 2016, 76, 780-798.	3.0	20
16	Hippocampal developmental vulnerability to methylmercury extends into prepubescence. Frontiers in Neuroscience, 2015, 9, 150.	2.8	22
17	<i>Engrailed-2</i> (i>En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior. Human Molecular Genetics, 2015, 24, 5805-5827.	2.9	45
18	Brain-Derived Neurotrophic Factor Deficiency Restricts Proliferation of Oligodendrocyte Progenitors Following Cuprizone-Induced Demyelination. ASN Neuro, 2015, 7, 175909141456687.	2.7	56

#	Article	IF	CITATIONS
19	Hippocampal ER Stress and Learning Deficits Following Repeated Pyrethroid Exposure. Toxicological Sciences, 2015, 143, 220-228.	3.1	61
20	Engrailed2 modulates cerebellar granule neuron precursor proliferation, differentiation and insulin-like growth factor 1 signaling during postnatal development. Molecular Autism, 2014, 5, 9.	4.9	20
21	Neural stem cell apoptosis after lowâ€methylmercury exposures in postnatal hippocampus produce persistent cell loss and adolescent memory deficits. Developmental Neurobiology, 2013, 73, 936-949.	3.0	43
22	Pro- and Anti-Mitogenic Actions of Pituitary Adenylate Cyclase-Activating Polypeptide in Developing Cerebral Cortex: Potential Mediation by Developmental Switch of PAC1 Receptor mRNA Isoforms. Journal of Neuroscience, 2013, 33, 3865-3878.	3.6	36
23	p57KIP2 regulates radial glia and intermediate precursor cell cycle dynamics and lower layer neurogenesis in developing cerebral cortex. Development (Cambridge), 2012, 139, 475-487.	2.5	69
24	Autism-Relevant Social Abnormalities and Cognitive Deficits in Engrailed-2 Knockout Mice. PLoS ONE, 2012, 7, e40914.	2.5	143
25	The multiple roles of the cyclinâ€dependent kinase inhibitory protein p57 ^{KIP2} in cerebral cortical neurogenesis. Developmental Neurobiology, 2012, 72, 821-842.	3.0	29
26	Nâ€acetyl cysteine treatment reduces mercuryâ€induced neurotoxicity in the developing rat hippocampus. Journal of Neuroscience Research, 2012, 90, 743-750.	2.9	38
27	Methylmercury (MeHg) elicits mitochondrial-dependent apoptosis in developing hippocampus and acts at low exposures. NeuroToxicology, 2011, 32, 535-544.	3.0	43
28	The Cyclin-Dependent Kinase Inhibitor p57Kip2 Regulates Cell Cycle Exit, Differentiation, and Migration of Embryonic Cerebral Cortical Precursors. Cerebral Cortex, 2011, 21, 1840-1856.	2.9	72
29	Insulin-Like Growth Factor-1 Promotes G ₁ /S Cell Cycle Progression through Bidirectional Regulation of Cyclins and Cyclin-Dependent Kinase Inhibitors via the Phosphatidylinositol 3-Kinase/Akt Pathway in Developing Rat Cerebral Cortex. Journal of Neuroscience, 2009, 29, 775-788.	3.6	149
30	Patterns of p57Kip2 expression in embryonic rat brain suggest roles in progenitor cell cycle exit and neuronal differentiation. Developmental Neurobiology, 2009, 69, 1-21.	3.0	38
31	Developmental mercury exposure elicits acute hippocampal cell death, reductions in neurogenesis, and severe learning deficits during puberty. Journal of Neurochemistry, 2007, 103, 1968-1981.	3.9	102
32	DNAse I pre-treatment markedly enhances detection of nuclear cyclin-dependent kinase inhibitor p57Kip2 and BrdU double immunostaining in embryonic rat brain. Histochemistry and Cell Biology, 2007, 127, 195-203.	1.7	22
33	The Developmental Neurobiology of Autism Spectrum Disorder. Journal of Neuroscience, 2006, 26, 6897-6906.	3.6	384
34	Methylmercury elicits rapid inhibition of cell proliferation in the developing brain and decreases cell cycle regulator, cyclin E. NeuroToxicology, 2006, 27, 970-981.	3.0	75
35	Support for the Homeobox Transcription Factor Gene ENGRAILED 2 as an Autism Spectrum Disorder Susceptibility Locus. American Journal of Human Genetics, 2005, 77, 851-868.	6.2	164
36	Basic Fibroblast Growth Factor Exhibits Dual and Rapid Regulation of Cyclin D ₁ and p27 ^{KIP1} to Stimulate Proliferation of Rat Cerebral Cortical Precursors. Developmental Neuroscience, 2004, 26, 197-207.	2.0	27

#	Article	IF	CITATIONS
37	Pituitary Adenylate Cyclase Activating Polypeptide Anti-Mitogenic Signaling in Cerebral Cortical Progenitors Is Regulated by p57Kip2-Dependent CDK2 Activity. Journal of Neuroscience, 2002, 22, 1583-1591.	3.6	77
38	Pituitary Adenylate Cyclase-Activating Polypeptide and Sonic Hedgehog Interact to Control Cerebellar Granule Precursor Cell Proliferation. Journal of Neuroscience, 2002, 22, 9244-9254.	3.6	116
39	Hippocampal granule neuron production and population size are regulated by levels of bFGF. European Journal of Neuroscience, 2002, 15, 3-12.	2.6	100
40	Ephrins stimulate neurite outgrowth during early cortical neurogenesis. Journal of Neuroscience Research, 2001, 66, 1054-1063.	2.9	38
41	A single peripheral injection of basic fibroblast growth factor (bFGF) stimulates granule cell production and increases cerebellar growth in newborn rats. Journal of Neurobiology, 2001, 46, 220-229.	3.6	45
42	PACAP is an anti-mitogenic signal in developing cerebral cortex. Nature Neuroscience, 2001, 4, 123-124.	14.8	120
43	Ephrins stimulate or inhibit neurite outgrowth and survival as a function of neuronal cell type. Journal of Neuroscience Research, 2000, 60, 427-436.	2.9	55
44	Stimulation of Neonatal and Adult Brain Neurogenesis by Subcutaneous Injection of Basic Fibroblast Growth Factor. Journal of Neuroscience, 1999, 19, 6006-6016.	3.6	355
45	Cerebellar granule cells elaborate neurites before mitosis. Developmental Brain Research, 1997, 102, 305-308.	1.7	13
46	Expression of the helix-loop-helix genes Id-1 and NSCL-1 during cerebellar development., 1997, 208, 107-114.		31
47	Mitotic neuroblasts determine neuritic patterning of progeny. , 1996, 367, 623-635.		11
48	NT-3 stimulates sympathetic neuroblast proliferation by promoting precursor survival. Neuron, 1993, 11, 1101-1111.	8.1	211