Balázs István Tóth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4360554/publications.pdf

Version: 2024-02-01

72 papers

3,266 citations

147566 31 h-index 56 g-index

73 all docs

73 docs citations

times ranked

73

3794 citing authors

#	Article	IF	CITATIONS
1	Pruritus: A Sensory Symptom Generated in Cutaneous Immuno-Neuronal Crosstalk. Frontiers in Pharmacology, 2022, 13, 745658.	1.6	11
2	Opioidergic Signaling—A Neglected, Yet Potentially Important Player in Atopic Dermatitis. International Journal of Molecular Sciences, 2022, 23, 4140.	1.8	4
3	The TRPM3 ion channel mediates nociception but not itch evoked by endogenous pruritogenic mediators. Biochemical Pharmacology, 2021, 183, 114310.	2.0	9
4	Synthesis and Cell Growth Inhibitory Activity of Six Nonâ€glycosaminoglycanâ€Type Heparinâ€Analogue Trisaccharides. ChemMedChem, 2021, 16, 1467-1476.	1.6	4
5	TRPM3 in Brain (Patho)Physiology. Frontiers in Cell and Developmental Biology, 2021, 9, 635659.	1.8	21
6	Anandamide Concentration-Dependently Modulates Toll-Like Receptor 3 Agonism or UVB-Induced Inflammatory Response of Human Corneal Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 7776.	1.8	4
7	Knoevenagelâ€Cyclization Cascade Reactions of Substituted 5,6â€Dihydroâ€2 <i>H</i> à€Pyran Derivatives. European Journal of Organic Chemistry, 2021, 2021, 6161-6170.	1.2	4
8	Adenosine Promotes Human Hair Growth and Inhibits Catagen Transition InÂVitro: Role of the Outer Root Sheath Keratinocytes. Journal of Investigative Dermatology, 2020, 140, 1085-1088.e6.	0.3	3
9	TRPM3 Mediates Pain but Not Itch. Biophysical Journal, 2020, 118, 414a.	0.2	O
10	Synthesis and HPLC-ECD Study of Cytostatic Condensed O,N-Heterocycles Obtained from 3-Aminoflavanones. Biomolecules, 2020, 10, 1462.	1.8	2
11	Synthesis and antiproliferative activity of 6-naphthylpterocarpans. Organic and Biomolecular Chemistry, 2020, 18, 2148-2162.	1.5	7
12	Role of Epidermal TRP Channels in the Development of Pruritogenic Signals. Biophysical Journal, 2020, 118, 414a.	0.2	0
13	Volatile anaesthetics inhibit the thermosensitive nociceptor ion channel transient receptor potential melastatin 3 (TRPM3). Biochemical Pharmacology, 2020, 174, 113826.	2.0	6
14	639 Regulatory function of TRPV4 on the dermal component of inflammatory skin conditions. Journal of Investigative Dermatology, 2019, 139, S324.	0.3	0
15	401 Pruriceptive role of TRPM3. Journal of Investigative Dermatology, 2019, 139, S283.	0.3	0
16	THU0352â€THE ROLE OF PRURITOGENIC MEDIATORS IN DERMATOMYOSITIS RELATED ITCH. , 2019, , .		0
17	Activation of TRPV3 Inhibits Lipogenesis and Stimulates Production of Inflammatory Mediators inÂHuman Sebocytes—A Putative Contributor to DryÂSkin Dermatoses. Journal of Investigative Dermatology, 2019, 139, 250-253.	0.3	22
18	TRPA1 Acts in a Protective Manner in Imiquimod-Induced Psoriasiform Dermatitis in Mice. Journal of Investigative Dermatology, 2018, 138, 1774-1784.	0.3	51

#	Article	IF	CITATIONS
19	Volatile Anaesthetics Inhibit Thermosensitive TRPM3 Ion Channels. Biophysical Journal, 2018, 114, 642a.	0.2	O
20	Endogenous Factors That Can Influence Skin pH. Current Problems in Dermatology, 2018, 54, 54-63.	0.8	5
21	Human podocytes express functional thermosensitive TRPV channels. British Journal of Pharmacology, 2017, 174, 4493-4507.	2.7	13
22	Recent advances in the endocrinology of the sebaceous gland. Dermato-Endocrinology, 2017, 9, e1361576.	1.9	26
23	Definition of two agonist types at the mammalian cold-activated channel TRPM8. ELife, 2016, 5, .	2.8	25
24	Phosphoinositide regulation of TRPM channels – TRPM3 joins the club!. Channels, 2016, 10, 83-85.	1.5	5
25	Restoration of Progranulin Expression Rescues Cortical Neuron Generation in an Induced Pluripotent Stem Cell Model of Frontotemporal Dementia. Stem Cell Reports, 2015, 4, 16-24.	2.3	62
26	Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. Journal of General Physiology, 2015, 146, 51-63.	0.9	62
27	Transient Receptor Potential Dysfunctions in Hereditary Diseases. , 2015, , 13-33.		3
28	Transient Receptor Potential Channels and Itch: How Deep Should We Scratch?. Handbook of Experimental Pharmacology, 2015, 226, 89-133.	0.9	23
29	<scp>TRP</scp> channels in the skin. British Journal of Pharmacology, 2014, 171, 2568-2581.	2.7	97
30	Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. Journal of Clinical Investigation, 2014, 124, 3713-3724.	3.9	199
31	The in vitro treatment with vitamin D3 is ineffective on the expression of PKC isoenzymes, but decreases further the impaired production of IL-2 in the T lymphocytes of SLE patients. Rheumatology International, 2014, 34, 717-720.	1.5	10
32	Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nature Chemical Biology, 2014, 10, 188-195.	3.9	86
33	A Meeting of Two Chronobiological Systems: Circadian Proteins Period1 and BMAL1 Modulate the Human Hair Cycle Clock. Journal of Investigative Dermatology, 2014, 134, 610-619.	0.3	84
34	PPARγ-Mediated and Arachidonic Acid–Dependent Signaling Is Involved in Differentiation and Lipid Production of Human Sebocytes. Journal of Investigative Dermatology, 2014, 134, 910-920.	0.3	77
35	Species-Dependent Effects of Mustard Oil on TRPM8. Biophysical Journal, 2014, 106, 337a.	0.2	0
36	Transient receptor potential vanilloidâ€2 mediates the effects of transient heat shock on endocytosis of human monocyteâ€derived dendritic cells. FEBS Letters, 2013, 587, 1440-1445.	1.3	32

#	Article	IF	CITATIONS
37	Endocannabinoids regulate human skin mast cell maturation and activation via cannabinoid receptor (CB)-1. Journal of Dermatological Science, 2013, 69, e79.	1.0	O
38	TRP Channels and Pruritus. Open Pain Journal, 2013, 6, 62-80.	0.4	13
39	A novel control of human keratin expression: cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in human keratinocytes <i>in vitro</i> and <i>in situ</i> . PeerJ, 2013, 1, e40.	0.9	59
40	Protein Kinase C Isoforms Have Differential Roles in the Regulation of Human Sebocyte Biology. Journal of Investigative Dermatology, 2012, 132, 1988-1997.	0.3	17
41	Endocannabinoids limit excessive mast cell maturation and activation in human skin. Journal of Allergy and Clinical Immunology, 2012, 129, 726-738.e8.	1.5	114
42	Endocannabinoids Regulate Growth and Survival of Human Eccrine Sweat Gland–Derived Epithelial Cells. Journal of Investigative Dermatology, 2012, 132, 1967-1976.	0.3	22
43	Thyrotropin-Releasing Hormone Controls Mitochondrial Biology in Human Epidermis. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 978-986.	1.8	43
44	Different Effects of Bortezomib on the Expressions of Various Protein Kinase C Isoenzymes in T Cells of Patients with Systemic Lupus Erythematosus and in Jurkat Cells. Scandinavian Journal of Immunology, 2012, 75, 243-248.	1.3	6
45	Early cardiac dysfunction is rescued by upregulation of <scp>SERCA</scp> 2a pump activity in a rat model of metabolic syndrome. Acta Physiologica, 2012, 205, 381-393.	1.8	20
46	The neuropeptide galanin is a novel inhibitor of human hair growth. British Journal of Dermatology, 2012, 167, 10-16.	1.4	18
47	"Sebocytes' makeupâ€⊷ Novel mechanisms and concepts in the physiology of the human sebaceous glands. Pflugers Archiv European Journal of Physiology, 2011, 461, 593-606.	1.3	59
48	Endocannabinoids Modulate Human Epidermal Keratinocyte Proliferation and Survival via the Sequential Engagement of Cannabinoid Receptor-1 and Transient Receptor Potential Vanilloid-1. Journal of Investigative Dermatology, 2011, 131, 1095-1104.	0.3	102
49	Activation of Transient Receptor Potential Vanilloid-3 Inhibits Human Hair Growth. Journal of Investigative Dermatology, 2011, 131, 1605-1614.	0.3	101
50	Hearts of surviving MLP-KO mice show transient changes of intracellular calcium handling. Molecular and Cellular Biochemistry, 2010, 342, 251-260.	1.4	12
51	Prolactin—a novel neuroendocrine regulator of human keratin expression <i>in situ</i> . FASEB Journal, 2010, 24, 1768-1779.	0.2	63
52	Upregulation of Transient Receptor Potential Vanilloid Type-1 Receptor Expression in Oral Lichen Planus. NeuroImmunoModulation, 2010, 17, 103-108.	0.9	15
53	RasGRP3 Contributes to Formation and Maintenance of the Prostate Cancer Phenotype. Cancer Research, 2010, 70, 7905-7917.	0.4	40
54	Transient receptor potential vanilloidâ€1 signaling inhibits differentiation and activation of human dendritic cells. FEBS Letters, 2009, 583, 1619-1624.	1,3	71

#	Article	IF	CITATIONS
55	Increased expressions of cannabinoid receptor-1 and transient receptor potential vanilloid-1 in human prostate carcinoma. Journal of Cancer Research and Clinical Oncology, 2009, 135, 507-514.	1.2	94
56	Transient Receptor Potential Vanilloid-1 Signaling as a Regulator of Human Sebocyte Biology. Journal of Investigative Dermatology, 2009, 129, 329-339.	0.3	76
57	Increased expression of TRPV1 in squamous cell carcinoma of the human tongue. Oral Diseases, 2009, 15, 328-335.	1.5	63
58	Protein kinase C isoenzymes differentially regulate the differentiationâ€dependent expression of adhesion molecules in human epidermal keratinocytes. Experimental Dermatology, 2009, 18, 122-129.	1.4	17
59	The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities. Trends in Pharmacological Sciences, 2009, 30, 411-420.	4.0	207
60	Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skinâ€derived cells. Experimental Dermatology, 2008, 17, 659-667.	1.4	117
61	Protein kinase C protects from DNA damageâ€induced necrotic cell death by inhibiting poly(ADPâ€ribose) polymeraseâ€1. FEBS Letters, 2008, 582, 1672-1678.	1.3	23
62	Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes <i>via</i> cannabinoid receptorâ€2â€mediated signaling. FASEB Journal, 2008, 22, 3685-3695.	0.2	125
63	The Analgesic Drug, Tramadol, Acts as an Agonist of the Transient Receptor Potential Vanilloid-1. Anesthesia and Analgesia, 2008, 106, 1890-1896.	1.1	51
64	Inhibition of human hair follicle growth by endoâ€and exocannabinoids. FASEB Journal, 2007, 21, 3534-3541.	0.2	98
65	TRP channels as novel players in the pathogenesis and therapy of itch. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 1004-1021.	1.8	89
66	Protein kinase $C-\hat{l}^2$ and $-\hat{l}'$ isoenzymes promote arachidonic acid production and proliferation of MonoMac-6 cells. Journal of Molecular Medicine, 2007, 85, 1031-1042.	1.7	13
67	Effects of sex hormones on ECG parameters and expression of cardiac ion channels in dogs. Acta Physiologica, 2006, 188, 163-171.	1.8	70
68	Differences in purinergic and voltage-dependent signalling during protein kinase Cα overexpressionand culturing-induced differentiation of C2C12 myoblasts. Journal of Muscle Research and Cell Motility, 2006, 27, 617-630.	0.9	8
69	Insulin-like growth factor-l-coupled mitogenic signaling in primary cultured human skeletal muscle cells and in C2C12 myoblasts. A central role of protein kinase Cl´. Cellular Signalling, 2006, 18, 1461-1472.	1.7	37
70	Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium. Pflugers Archiv European Journal of Physiology, 2005, 450, 307-316.	1.3	118
71	Apico?basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium. Cardiovascular Research, 2005, 65, 851-860.	1.8	149
72	A Hot New Twist to Hair Biology. American Journal of Pathology, 2005, 166, 985-998.	1.9	179