Constantin Vahlas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/436054/publications.pdf

Version: 2024-02-01

157 papers 2,619 citations

304368 22 h-index 243296 44 g-index

161 all docs

161 docs citations

161 times ranked

2404 citing authors

#	Article	IF	CITATIONS
1	An innovative kinetic model allowing insight in the moderate temperature chemical vapor deposition of silicon oxynitride films from tris(dimethylsilyl)amine. Chemical Engineering Journal, 2022, 431, 133350.	6.6	4
2	Single-source heterometallic precursors to MOCVD Pd Cu alloy films for energy and catalysis applications. , 2022, , 453-472.		1
3	Metalorganic chemical vapor deposition of aluminum oxides: A paradigm on the process-structure-properties relationship. , 2022, , 133-168.		O
4	Tunable SiO2 to SiOxCyH films by ozone assisted chemical vapor deposition from tetraethylorthosilicate and hexamethyldisilazane mixtures. Surface and Coatings Technology, 2021, 407, 126762.	2.2	8
5	Engineering structure and functionalities of chemical vapor deposited photocatalytic titanium dioxide films through different types of precursors. CrystEngComm, 2021, 23, 3681-3692.	1.3	3
6	An innovative GC-MS, NMR and ESR combined, gas-phase investigation during chemical vapor deposition of silicon oxynitrides films from tris(dimethylsilyl)amine. Physical Chemistry Chemical Physics, 2021, 23, 10560-10572.	1.3	3
7	Engineering Copper Adhesion on Poly-Epoxy Surfaces Allows One-Pot Metallization of Polymer Composite Telecommunication Waveguides. Coatings, 2021, 11, 50.	1.2	3
8	In- and out-plane transport properties of chemical vapor deposited TiO2 anatase films. Journal of Materials Science, 2021, 56, 10458-10476.	1.7	13
9	Network hydration, ordering and composition interplay of chemical vapor deposited amorphous silica films from tetraethyl orthosilicate. Journal of Materials Research and Technology, 2021, 13, 534-547.	2.6	4
10	Direct liquid injection chemical vapor deposition of ZrO2 films from a heteroleptic Zr precursor: interplay between film characteristics and corrosion protection of stainless steel. Journal of Materials Research and Technology, 2021, 13, 1599-1614.	2.6	16
11	Beyond surface nanoindentation: Combining static and dynamic nanoindentation to assess intrinsic mechanical properties of chemical vapor deposition amorphous silicon oxide (SiOx) and silicon oxycarbide (SiOxCy) thin films. Thin Solid Films, 2021, 735, 138844.	0.8	1
12	Barrier properties and hydrothermal aging of amorphous alumina coatings applied on pharmaceutical vials. Surface and Coatings Technology, 2021, 425, 127711.	2.2	2
13	Morphological, structural, optical, and electrical study of nanostructured thin films: Charge transport mechanism of p-type Co3O4. Materials Chemistry and Physics, 2020, 240, 122059.	2.0	11
14	Efficient, durable protection of the Ti6242S titanium alloy against high-temperature oxidation through MOCVD processed amorphous alumina coatings. Journal of Materials Science, 2020, 55, 4883-4895.	1.7	5
15	Large temperature range model for the atmospheric pressure chemical vapor deposition of silicon dioxide films on thermosensitive substrates. Chemical Engineering Research and Design, 2020, 161, 146-158.	2.7	9
16	Study on Structural and Thermal Characteristics of Heteroleptic Yttrium Complexes as Potential Precursors for Vapor Phase Deposition. European Journal of Inorganic Chemistry, 2020, 2020, 3587-3596.	1.0	12
17	Chemical vapor deposition of Cu films from copper(I) cyclopentadienyl triethylphophine: Precursor characteristics and interplay between growth parameters and films morphology. Thin Solid Films, 2020, 701, 137967.	0.8	5
18	MONITORING COMPOSITION AND STRUCTURE OF MOCVD ZrO2-BASED MULTICOMPONENT FILMS BY INNOVATIVE MIXED METAL-ORGANIC PRECURSORS. Journal of Structural Chemistry, 2020, 61, 1729-1739.	0.3	1

#	Article	IF	CITATIONS
19	TiO2 nanotree films for the production of green H2 by solar water splitting: From microstructural and optical characteristics to the photocatalytic properties. Applied Surface Science, 2019, 494, 1127-1137.	3.1	20
20	Investigation of the initial deposition steps and the interfacial layer of Atomic Layer Deposited (ALD) Al2O3 on Si. Applied Surface Science, 2019, 492, 245-254.	3.1	46
21	Ιn situ N2-NH3 plasma pre-treatment of silicon substrate enhances the initial growth and restricts the substrate oxidation during alumina ALD. Journal of Applied Physics, 2019, 126, 125305.	1.1	6
22	Investigation of the densification mechanisms and corrosion resistance of amorphous silica films. Journal of Non-Crystalline Solids, 2019, 515, 34-41.	1.5	25
23	Detailed investigation of the surface mechanisms and their interplay with transport phenomena in alumina atomic layer deposition from TMA and water. Chemical Engineering Science, 2019, 195, 399-412.	1.9	35
24	Computational Fluid Dynamics simulation of the ALD of alumina from TMA and H2O in a commercial reactor. Chemical Engineering Research and Design, 2018, 132, 795-811.	2.7	26
25	Investigation of reaction mechanisms in the chemical vapor deposition of al from DMEAA. Chemical Engineering Science, 2018, 177, 464-470.	1.9	13
26	Chemical Vapor Deposition of Al ₁₃ Fe ₄ Highly Selective Catalytic Films for the Semiâ∈Hydrogenation of Acetylene. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700692.	0.8	8
27	Black Co oxides coatings for thermosensitive polymer surfaces by low-temperature DLI-MOCVD. Surface and Coatings Technology, 2018, 349, 941-948.	2.2	4
28	Development of a kinetic model for the moderate temperature chemical vapor deposition of SiO ₂ films from tetraethyl orthosilicate and oxygen. AICHE Journal, 2018, 64, 3958-3966.	1.8	9
29	Atomic scale structure of amorphous aluminum oxyhydroxide, oxide and oxycarbide films probed by very high field ²⁷ Al nuclear magnetic resonance. Physical Chemistry Chemical Physics, 2017, 19, 8101-8110.	1.3	23
30	Combined Macro/Nanoscale Investigation of the Chemical Vapor Deposition of Fe from Fe(CO) < sub > 5 < /sub > . Advanced Materials Interfaces, 2017, 4, 1601185.	1.9	10
31	Adaptation of a dry metalorganic chemical vapor deposition metallization process to a wet chemical pretreatment of polymers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 061101.	0.9	1
32	Nanocomposite thin film of Ag nanoparticles embedded in amorphous Al 2 O 3 on optical sensors windows: Synthesis, characterization and targeted application towards transparency and anti-biofouling. Surface and Coatings Technology, 2017, 328, 371-377.	2.2	7
33	Amorphous Alumina Barrier Coatings on Glass: MOCVD Process and Hydrothermal Aging. Advanced Materials Interfaces, 2016, 3, 1600014.	1.9	5
34	Amorphous alumina thin films deposited on titanium: Interfacial chemistry and thermal oxidation barrier properties. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 470-480.	0.8	7
35	Metallization of carbon fiber reinforced polymers: Chemical kinetics, adhesion, and properties. Surface and Coatings Technology, 2016, 308, 62-69.	2.2	9
36	Multiscale modeling and experimental analysis of chemical vapor deposited aluminum films: Linking reactor operating conditions with roughness evolution. Chemical Engineering Science, 2016, 155, 449-458.	1.9	19

#	Article	IF	Citations
37	Chemical vapor deposition of low reflective cobalt (II) oxide films. Applied Surface Science, 2016, 360, 540-546.	3.1	13
38	Thermal decomposition of tungsten hexacarbonyl: CVD of W-containing films under Pd codeposition and VUV assistance. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1047-1052.	0.8	6
39	A Processâ€Structure Investigation of Aluminum Oxide and Oxycarbide Thin Films prepared by Direct Liquid Injection CVD of Dimethylaluminum Isopropoxide (DMAI). Chemical Vapor Deposition, 2015, 21, 343-351.	1.4	8
40	Alumina thin films prepared by direct liquid injection chemical vapor deposition of dimethylaluminum isopropoxide: a processâ€structure investigation. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 989-995.	0.8	10
41	Investigation of the kinetics of the chemical vapor deposition of aluminum from dimethylethylamine alane: experiments and computations. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 923-930.	0.8	7
42	Processâ€structureâ€properties relationship in direct liquid injection chemical vapor deposition of amorphous alumina from aluminum triâ€isopropoxide. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 944-952.	0.8	9
43	Liquid and Solid Precursor Delivery Systems in Gas Phase Processes. Recent Patents on Materials Science, 2015, 8, 91-108.	0.5	13
44	Modeling a MOCVD process to apply alumina films on the inner surface of bottles. Surface and Coatings Technology, 2015, 275, 167-175.	2.2	7
45	Volatile Heterobimetallic Complexes from Pd ^{II} and Cu ^{II} βâ€Diketonates: Structure, Magnetic Anisotropy, and Thermal Properties Related to the Chemical Vapor Deposition of CuPd Thin Films. ChemPlusChem, 2015, 80, 1457-1464.	1.3	15
46	Toward a computational and experimental model of a poly-epoxy surface. Applied Surface Science, 2015, 324, 605-611.	3.1	11
47	Chemical vapor deposition of Pd/Cu alloy films from a new single source precursor. Journal of Crystal Growth, 2015, 414, 130-134.	0.7	22
48	Corrosion protection of 304L stainless steel by chemical vapor deposited alumina coatings. Corrosion Science, 2014, 81, 125-131.	3.0	83
49	Surface-driven, one-step chemical vapor deposition of \hat{I}^3 -Al4Cu9 complex metallic alloy film. Applied Surface Science, 2013, 283, 788-793.	3.1	7
50	Metallization of polymer composites by metalorganic chemical vapor deposition of Cu: Surface functionalization driven films characteristics. Surface and Coatings Technology, 2013, 230, 254-259.	2.2	47
51	Temperature-Dependent 4-, 5- and 6-Fold Coordination of Aluminum in MOCVD-Grown Amorphous Alumina Films: A Very High Field ²⁷ Al-NMR study. Journal of Physical Chemistry C, 2013, 117, 21965-21971.	1.5	78
52	Experimental and computational investigation of chemical vapor deposition of Cu from Cu amidinate. Surface and Coatings Technology, 2013, 230, 273-278.	2.2	13
53	Ballistic and molecular dynamics simulations of aluminum deposition in micro-trenches. Thin Solid Films, 2013, 536, 115-123.	0.8	2
54	Alâ€"Cu intermetallic coatings processed by sequential metalorganic chemical vapour deposition and post-deposition annealing. Applied Surface Science, 2012, 258, 6425-6430.	3.1	12

#	Article	IF	CITATIONS
55	Monitoring microstructure and phase transitions in thin films by highâ€temperature resistivity measurements. Surface and Interface Analysis, 2012, 44, 1162-1165.	0.8	4
56	Mass Spectrometric Monitoring of the Gas Phase during the CVD of Copper from Copper Cyclopentadienyl Triethylphosphine. Chemical Vapor Deposition, 2012, 18, 209-214.	1.4	13
57	Decomposition Schemes of Copper(I) <l>N</l> , <l>N</l> ′-Diisopropylacetamidinate During Chemical Vapor Deposition of Copper. Journal of Nanoscience and Nanotechnology, 2011, 11, 8198-8201.	0.9	12
58	SUBLIBOX: A Proprietary Solvent Free Method for Intense Vaporization of Solid Compounds. Journal of Nanoscience and Nanotechnology, 2011, 11, 8148-8151.	0.9	0
59	Mechanical and barrier properties of MOCVD processed alumina coatings on Ti6Al4V titanium alloy. Surface and Coatings Technology, 2011, 206, 1684-1690.	2.2	45
60	Local Kinetic Modeling of Aluminum Oxide Metalâ€Organic CVD From Aluminum Triâ€isopropoxide. Chemical Vapor Deposition, 2011, 17, 181-185.	1.4	15
61	Functionalization of, and Deposition on Complexâ€Shaped Surfaces: Vacuum Processes, Materials, Models, Challenges, and Methods. Chemical Vapor Deposition, 2011, 17, 274-278.	1.4	2
62	Conformity of Aluminum Thin Films Deposited onto Microâ€Patterned Silicon Wafers by Pulsed Laser Deposition, Magnetron Sputtering, and CVD. Chemical Vapor Deposition, 2011, 17, 366-374.	1.4	16
63	Amorphous Alumina Coatings: Processing, Structure and Remarkable Barrier Properties. Journal of Nanoscience and Nanotechnology, 2011, 11, 8387-8391.	0.9	18
64	CVD of Pure Copper Films from Amidinate Precursor. Electrochemical and Solid-State Letters, 2011, 14, D26.	2.2	31
65	CHEMICAL VAPOR DEPOSITION OF METALS: FROM UNARY SYSTEMS TO COMPLEX METALLIC ALLOYS. Book Series on Complex Metallic Alloys, 2010, , 49-81.	0.1	5
66	Chemical Vapor Deposition of Iron, Iron Carbides, and Iron Nitride Films from Amidinate Precursors. Journal of the Electrochemical Society, 2010, 157, D454.	1.3	21
67	Chemical vapour deposition and atomic layer deposition of amorphous and nanocrystalline metallic coatings: Towards deposition of multimetallic films. Journal of Alloys and Compounds, 2010, 504, S422-S424.	2.8	10
68	Reaction and Transport Interplay in Al MOCVD Investigated Through Experiments and Computational Fluid Dynamic Analysis. Journal of the Electrochemical Society, 2010, 157, D633.	1.3	20
69	Microstructural and mechanical properties of powder NiCoCrAlYTa superalloy consolidated by spark plasma sintering. , 2009, , .		2
70	CVD of Pure Copper Films from a Novel Amidinate Precursor. ECS Transactions, 2009, 25, 581-586.	0.3	18
71	Iron Amidinates as Precursors for the MOCVD of Iron Containing Thin Films. ECS Transactions, 2009, 25, 181-188.	0.3	5
72	Mass Spectrometry as a Tool to Study MOCVD Process. ECS Transactions, 2009, 25, 1301-1308.	0.3	5

#	Article	IF	Citations
73	Residual Stress Mechanisms in Aluminium Oxide Films Grown by MOCVD. ECS Transactions, 2009, 25, 1309-1315.	0.3	3
74	Shape Optimization of a Showerhead System for the Control of Growth Uniformity in a MOCVD Reactor Using CFD-based Evolutionary Algorithms. ECS Transactions, 2009, 25, 1053-1060.	0.3	8
75	A Comprehensive Insight in the MOCVD of Aluminum through Interaction between Reactive Transport Modeling and Targeted Growth Experiments. ECS Transactions, 2009, 25, 99-106.	0.3	0
76	Microstructural characterization of Ru-doped NiCoCrAlYTa coupons treated by thermal oxidation. Corrosion Science, 2009, 51, 2192-2196.	3.0	3
77	Platinum Protective Coatings Processed by Organometallic CVD. Chemical Vapor Deposition, 2008, 14, 103-106.	1.4	6
78	Electrochemical Behavior of Chemical Vapor Deposited Protective Aluminum Oxide Coatings on Ti6242 Titanium Alloy. Electrochemical and Solid-State Letters, 2008, 11, C55.	2.2	15
79	Phase Transformations of Metallorganic Chemical Vapor Deposition Processed Alumina Coatings Investigated by In Situ Deflection. Journal of the Electrochemical Society, 2007, 154, P63.	1.3	12
80	Protective Alumina Coatings by Low Temperature Metalorganic Chemical Vapour Deposition. Advanced Materials Research, 2007, 23, 245-248.	0.3	5
81	Microstructure of Metallorganic Chemical Vapor Deposited Aluminum Coatings on Ti6242 Titanium Alloy. Journal of the Electrochemical Society, 2007, 154, D538.	1.3	7
82	Nanoenergetic Materials for MEMS: A Review. Journal of Microelectromechanical Systems, 2007, 16, 919-931.	1.7	416
83	A Delivery System for Precursor Vapors Based on Sublimation in a Fluidized Bed. Chemical Vapor Deposition, 2007, 13, 123-129.	1.4	19
84	CVD-Fabricated Aluminum Oxide Coatings from Aluminum tri-iso-propoxide: Correlation Between Processing Conditions and Composition. Chemical Vapor Deposition, 2007, 13, 23-29.	1.4	52
85	CVD and Powders: A Great Potential to Create New Materials. Chemical Vapor Deposition, 2007, 13, 443-445.	1.4	20
86	Aluminium tri-iso-propoxide: Shelf life, transport properties, and decomposition kinetics for the low temperature processing of aluminium oxide-based coatings. Surface and Coatings Technology, 2007, 201, 9159-9162.	2.2	36
87	An experimental and computational analysis of a MOCVD process for the growth of Al films using DMEAA. Surface and Coatings Technology, 2007, 201, 8868-8872.	2.2	34
88	Complex Pt/Al2O3 materials for small catalytic systems. Surface and Coatings Technology, 2007, 201, 9195-9199.	2.2	4
89	Thermal behaviour of CpCuPEt3 in gas phase and Cu thin films processing. Surface and Coatings Technology, 2007, 201, 9131-9134.	2.2	16
90	Principles and applications of CVD powder technology. Materials Science and Engineering Reports, 2006, 53, 1-72.	14.8	147

#	Article	IF	CITATIONS
91	Hydrodynamic study of fine metallic powders in an original spouted bed contactor in view of chemical vapor deposition treatments. Powder Technology, 2006, 165, 65-72.	2.1	10
92	EUROCVD-15. Chemical Vapor Deposition, 2006, 12, 649-654.	1.4	0
93	Low Temperature MOCVD-Processed Alumina Coatings. Advances in Science and Technology, 2006, 45, 1184-1193.	0.2	11
94	Iron Thin Films from Fe(CO)[sub 5] and FeCp[sub 2]â^•H[sub 2]O under Atmospheric Pressure. Journal of the Electrochemical Society, 2006, 153, G1025.	1.3	10
95	Al–Pt MOCVD coatings for the protection of Ti6242 alloy against oxidation at elevated temperature. Surface and Coatings Technology, 2005, 200, 1413-1417.	2.2	13
96	Transmission electron microscopy of Re and Ru films deposited on NiCoCrAlYTa powders. Scripta Materialia, 2004, 51, 699-703.	2.6	10
97	MOCVD processed platinum–aluminum coatings on titanium alloys. Surface and Coatings Technology, 2004, 188-189, 49-54.	2.2	7
98	Thermodynamic study and characterization of low pressure chemically vapor deposited silicon oxynitride films from tetraethylorthosilicate, dichlorosilane and ammonia gas mixtures. Thin Solid Films, 2003, 429, 77-83.	0.8	0
99	Chemical vapor deposition of ruthenium on NiCoCrAlYTa powders followed by thermal oxidation of the sintered coupons. Surface and Coatings Technology, 2003, 163-164, 44-49.	2,2	12
100	Fluidization, Spouting, and Metal–Organic CVD of Platinum Group Metals on Powders. Chemical Vapor Deposition, 2002, 8, 127.	1.4	28
101	Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon, 2002, 40, 1799-1807.	5.4	145
102	Growth of carbon nanotubes by fluidized bed catalytic chemical vapor deposition. European Physical Journal Special Topics, 2002, 12, 93-98.	0.2	1
103	Low pressure chemical vapor deposition of silicon oxynitride films using tetraethylorthosilicate, dichlorosilane and ammonia mixtures. European Physical Journal Special Topics, 2001, 11, Pr3-231-Pr3-238.	0.2	0
104	Spouted bed metallorganic chemical vapor deposition of ruthenium on NiCoCrAlYTa powders. European Physical Journal Special Topics, 2001, 11, Pr3-1117-Pr3-1123.	0.2	4
105	Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalysts and ethylene. Carbon, 2001, 39, 443-449.	5.4	33
106	Toward the Improvement of the Microstructure of Chemical Vapor Deposited Aluminum on Silicon Carbide. Journal of the Electrochemical Society, 2001, 148, C583.	1.3	5
107	Precursors and operating conditions for the metal-organic chemical vapor deposition of nickel films. Annales De Chimie: Science Des Materiaux, 2000, 25, 81-90.	0.2	25
108	Investigation of Nickelocene Decomposition during Chemical Vapor Deposition of Nickel. Journal of the Electrochemical Society, 2000, 147, 1443.	1,3	21

#	Article	IF	CITATIONS
109	Low Temperature Metallorganic Chemical Vapor Deposition Routes to Chromium Metal Thin Films Using Bis(benzene)chromium. Journal of the Electrochemical Society, 1999, 146, 3716-3723.	1.3	12
110	Low pressure chemical vapor deposition from TEOSâ€"NH3 mixtures: thermochemical study of the process considering kinetic data. Microelectronics Reliability, 1999, 39, 303-309.	0.9	3
111	Investigation of interfacial reactivity in composite materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 259, 269-278.	2.6	8
112	Thermodynamic Approach to the Oxidation of Hiâ€Nicalon Fiber. Journal of the American Ceramic Society, 1999, 82, 2514-2516.	1.9	9
113	MOCVD-Processed Ni Films from Nickelocene. Part I: Growth Rate and Morphology. Chemical Vapor Deposition, 1999, 5, 135-142.	1.4	34
114	MOCVD-Processed Ni Films from Nickelocene. Part II: Carbon Content of the Deposits. Chemical Vapor Deposition, 1999, 5, 143-149.	1.4	24
115	MOCVD Processed Ni Films from Nickelocene. Part III: Gas Phase Study and Deposition Mechanisms. Chemical Vapor Deposition, 1999, 5, 281-290.	1.4	13
116	Thermodynamic Study of the Formation of  C 60 and  C 70 by Combustion or Pyrolysis. Journal Electrochemical Society, 1999, 146, 2752-2761.	of the	6
117	MOCVD Processed Ni Films from Nickelocene. Part III: Gas Phase Study and Deposition Mechanisms. , 1999, 5, 281.		1
118	Composition and magnetic properties of MOCVD processed thin films from nickelocene. European Physical Journal Special Topics, 1999, 09, Pr8-1099-Pr8-1106.	0.2	2
119	MOCVD of Ni and Ni3C films from Ni(dmen)2(tfa)2. European Physical Journal Special Topics, 1999, 09, Pr8-597-Pr8-604.	0.2	0
120	Growth mechanisms of MOCVD processed Ni thin films. European Physical Journal Special Topics, 1999, 09, Pr8-57-Pr8-64.	0.2	0
121	DépÃt de Cr à basse température par MOCVD: inhibition de l'incorporation du carbone. Annales De Chimie: Science Des Materiaux, 1998, 23, 681-693.	0.2	0
122	A Thermodynamic Approach to the CVD of Chromium and of Chromium Carbides Starting from Cr(C6H6)2. Chemical Vapor Deposition, 1998, 4, 69-76.	1.4	12
123	Driving Force for Free-Carbon Incorporation in Chromium Carbide Films Processed by MOCVD. Chemical Vapor Deposition, 1998, 4, 96-99.	1.4	1
124	Experimental approaches to simulating interfacial reactions in metal matrix composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 1347-1355.	1.1	2
125	Thermodynamic study, compositional and electrical characterization of LPCVD SiO2 films grown from TEOS/N2O mixtures. Microelectronics Reliability, 1998, 38, 265-269.	0.9	10
	Thermodynamic Study Composition and Microstructure of Law&Droscure Chemical Vanor Denosited		

Thermodynamic Study, Composition, and Microstructure of Lowâ€Pressure Chemical Vapor Deposited

126 Silicon Dioxide Films Grown from  TEOS  /  N 2 O  Mixtures. Journal of the Electrochemical Society, 145, 1310-1317.

#	Article	IF	CITATIONS
127	Thermochemistry of Silicon Lpcvd Revisited with Kinetic Data. Materials Research Society Symposia Proceedings, 1998, 507, 951.	0.1	0
128	Processing of Pure Ni Mocvd Films. Materials Research Society Symposia Proceedings, 1998, 514, 491.	0.1	0
129	Crystallographic Analysis of Cvd Films by Using X-Ray Polychromatic Radiation. Materials Research Society Symposia Proceedings, 1998, 524, 121.	0.1	0
130	A Thermodynamic Approach to the CVD of Chromium and of Chromium Carbides Starting from Cr(C6H6)2. Chemical Vapor Deposition, 1998, 04, 69-76.	1.4	20
131	Driving Force for Free-Carbon Incorporation in Chromium Carbide Films Processed by MOCVD. Chemical Vapor Deposition, 1998, 04, 96-99.	1.4	2
132	Thermodynamic and Experimental Modeling of Interfacial Reactivity in Metal Matrix Composites. Key Engineering Materials, 1997, 127-131, 359-368.	0.4	4
133	Selection of metalorganic precursors for MOCVD of metallurgical coatings: application to Cr-based coatings. Surface and Coatings Technology, 1996, 86-87, 316-324.	2.2	22
134	Processing of Silicon Oxides Thin Films by Thermal LPCVD Starting from Teos Mixtures. Materials Research Society Symposia Proceedings, 1996, 446, 291.	0.1	1
135	Thermodynamic study of the thermal degradation of SiC-based fibres: Influence of SiC grain size. Journal of Materials Science Letters, 1995, 14, 1558-1561.	0.5	10
136	On the thermal degradation of lox-M tyranno $\hat{A}^{@}$ fibres. Journal of the European Ceramic Society, 1995, 15, 445-453.	2.8	15
137	Influence of Hydrogen Pressure on the Properties of CVD Tungsten Silicide Films. Journal of the Electrochemical Society, 1995, 142, 1608-1614.	1.3	6
138	Mass Spectrometric Study of the Gas Phase During Chemical Vapor Deposition of Pyrolytic Carbon. European Physical Journal Special Topics, 1995, 05, C5-89-C5-96.	0.2	2
139	Thermal degradation mechanisms of Nicalon fibre:a thermodynamic simulation. Journal of Materials Science, 1994, 29, 5839-5846.	1.7	37
140	LPCVD WSi2 Films Using Tungsten Chlorides and Silane. Journal of the Electrochemical Society, 1993, 140, 475-484.	1.3	21
141	Interest of thermochemical data bases linked to complex equilibria calculation codes for practical applications. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1993, 90, 281-293.	0.2	3
142	Chemical vapor deposition of pyrolytic carbon on polished substrates. European Physical Journal Special Topics, 1993, 03, C3-563-C3-570.	0.2	3
143	Thermodynamics of the Y-Ba-Cu-C-O-H System: Application to the Organometallic Chemical Vapor Deposition of the YBa2Cu3O7-x Phase. Journal of the American Ceramic Society, 1992, 75, 2679-2686.	1.9	15
144	A thermodynamic evaluation of the Ti-N system. Thermochimica Acta, 1991, 180, 23-37.	1.2	19

#	Article	IF	Citations
145	Chemical vapor deposition of refractory metal silicides. Applied Surface Science, 1989, 38, 407.	3.1	0
146	A thermodynamic and experimental approach to TaSi2 chemical vapour deposition. Thin Solid Films, 1989, 177, 189-206.	0.8	11
147	A thermodynamic evaluation of four Si-M (M = Mo, Ta, Ti, W) binary systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1989, 13, 273-292.	0.7	89
148	CHEMICAL VAPOR DEPOSITION OF TaSi2 AND WSi2 AT ATMOSPHERIC PRESSURE FROM IN SITU PREPARED METAL CHLORIDES. Journal De Physique Colloque, 1989, 50, C5-557-C5-563.	0.2	1
149	Adsorption-induced solid-liquid interfacial roughening in Zn alloys. Journal of Crystal Growth, 1988, 92, 253-258.	0.7	3
150	Tensions interfaciales et mecanismes de croissance monotectique des alliages immiscibles binaires. Scripta Metallurgica, 1984, 18, 1-6.	1.2	21
151	Etude de l'adsorption et de la tension interfaciale solide-liquide de systÑmes ternaires à base de zinc. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1983, 80, 515-521.	0.2	2
152	Evaluation of Al ₂ O ₃ MOCVD Coating for Titanium Alloys Protection under Severe Conditions at High Temperature. Materials Science Forum, 0, 595-598, 719-724.	0.3	3
153	Mechanical and Surface Properties of Chemical Vapor Deposited Protective Aluminium Oxide Films on TA6V Alloy. Advances in Science and Technology, 0, , .	0.2	4
154	Temperature Dependent 4-, 5- and 6-Fold Coordination of Aluminum in MOCVD-Grown Amorphous Alumina Films: From Local Coordination to Material Properties. Advances in Science and Technology, 0, , .	0.2	8
155	Amorphous Alumina Coatings on Glass Bottles Using Direct Liquid Injection MOCVD for Packaging Applications. Advances in Science and Technology, 0, , .	0.2	7
156	Amorphous Alumina Films Efficiently Protect Ti6242S against Oxidation and Allow Operation above 600 °C. Materials Science Forum, 0, 941, 1846-1852.	0.3	3
157	Critical Level of Nitrogen Incorporation in Silicon Oxynitride Films: Transition of Structure and Properties, toward Enhanced Anticorrosion Performance. ACS Applied Electronic Materials, 0, , .	2.0	2