
Tsegaye Tadesse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4359900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimating Leaf Area Index and biomass of sugarcane based on Gaussian process regression using Landsat 8 and Sentinel 1A observations. International Journal of Image and Data Fusion, 2023, 14, 58-88.	1.7	4
2	A statistical evaluation of Earth-observation-based composite drought indices for a localized assessment of agricultural drought in Pakistan. International Journal of Applied Earth Observation and Geoinformation, 2022, 106, 102646.	2.8	5
3	Assimilation of leaf Area Index from multisource earth observation data into the WOFOST model for sugarcane yield estimation. International Journal of Remote Sensing, 2022, 43, 698-720.	2.9	13
4	Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions. Hydrology and Earth System Sciences, 2021, 25, 565-581.	4.9	47
5	Exploring VIIRS Continuity with MODIS in an Expedited Capability for Monitoring Drought-Related Vegetation Conditions. Remote Sensing, 2021, 13, 1210.	4.0	9
6	A Satelliteâ€Based Assessment of the Relative Contribution of Hydroclimatic Variables on Vegetation Growth in Global Agricultural and Nonagricultural Regions. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033228.	3.3	6
7	Evaluation of Remotely Sensed Precipitation Estimates from the NASA POWER Project for Drought Detection Over Jordan. Earth Systems and Environment, 2021, 5, 561-573.	6.2	12
8	Evaluation of Regional Climate Models (RCMs) Using Precipitation and Temperature-Based Climatic Indices: A Case Study of Florida, USA. Water (Switzerland), 2021, 13, 2411.	2.7	3
9	Spatial and temporal trends and variability of rainfall using long-term satellite product over the Upper Blue Nile Basin in Ethiopia. Remote Sensing in Earth Systems Sciences, 2021, 4, 199-215.	1.8	8
10	Nutritional status of children aged 0–60 months in two drought-prone areas of Ethiopia. South African Journal of Clinical Nutrition, 2020, 33, 152-157.	0.7	4
11	Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India. Remote Sensing, 2020, 12, 2091.	4.0	45
12	Resilience to Large, "Catastrophic―Wildfires in North America's Grassland Biome. Earth's Future, 2020, 8, e2020EF001487.	6.3	14
13	Monitoring Residual Soil Moisture and Its Association to the Long-Term Variability of Rainfall over the Upper Blue Nile Basin in Ethiopia. Remote Sensing, 2020, 12, 2138.	4.0	7
14	A review of drought monitoring using remote sensing and data mining methods. , 2020, , .		12
15	Forest Drought Response Index (ForDRI): A New Combined Model to Monitor Forest Drought in the Eastern United States. Remote Sensing, 2020, 12, 3605.	4.0	4
16	Combined Use of Sentinel-1 SAR and Landsat Sensors Products for Residual Soil Moisture Retrieval over Agricultural Fields in the Upper Blue Nile Basin, Ethiopia. Sensors, 2020, 20, 3282.	3.8	12
17	Agricultural Drought Assessment in East Asia Using Satellite-Based Indices. Remote Sensing, 2020, 12, 444.	4.0	31
18	Drought Analyses of the Horné Požitavie Region (Slovakia) in the Period 1966–2013. Advances in Meteorology, 2019, 2019, 1-10.	1.6	13

#	Article	IF	CITATIONS
19	Urban drought challenge to 2030 sustainable development goals. Science of the Total Environment, 2019, 693, 133536.	8.0	147
20	Earth Observation and Climate Services for Food Security and Agricultural Decision Making in South and Southeast Asia. Bulletin of the American Meteorological Society, 2019, 100, ES171-ES174.	3.3	2
21	Building A High-Resolution Vegetation Outlook Model to Monitor Agricultural Drought for the Upper Blue Nile Basin, Ethiopia. Remote Sensing, 2019, 11, 371.	4.0	10
22	Soil Moisture Monitoring Using Remote Sensing Data and a Stepwise-Cluster Prediction Model: The Case of Upper Blue Nile Basin, Ethiopia. Remote Sensing, 2019, 11, 125.	4.0	13
23	Developing a satellite-based combined drought indicator to monitor agricultural drought: a case study for Ethiopia. GIScience and Remote Sensing, 2019, 56, 718-748.	5.9	39
24	Linking seasonal drought product information to decision makers in a data-sparse region: A case study in the Greater Horn of Africa. Remote Sensing Applications: Society and Environment, 2019, 14, 200-206.	1.5	2
25	Improving National and Regional Drought Early Warning Systems in the Greater Horn of Africa. Bulletin of the American Meteorological Society, 2018, 99, ES135-ES138.	3.3	5
26	Influence of urbanization-driven land use/cover change on climate: The case of Addis Ababa, Ethiopia. Physics and Chemistry of the Earth, 2018, 105, 212-223.	2.9	62
27	Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events. International Journal of Remote Sensing, 2018, 39, 1548-1574.	2.9	21
28	Vegetation condition prediction for drought monitoring in pastoralist areas: a case study in Ethiopia. International Journal of Remote Sensing, 2018, 39, 4599-4615.	2.9	12
29	Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 292-312.	2.7	404
30	Empowerment and Tech Adoption: Introducing the Treadle Pump Triggers Farmers' Innovation in Eastern Ethiopia. Sustainability, 2018, 10, 3268.	3.2	3
31	Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices. Remote Sensing of Environment, 2018, 219, 15-30.	11.0	64
32	Crop model and weather data generation evaluation for conservation agriculture in Ethiopia. Field Crops Research, 2018, 228, 122-134.	5.1	18
33	Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sensing of Environment, 2018, 213, 129-143.	11.0	150
34	Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia. Atmospheric Measurement Techniques, 2018, 11, 1921-1936.	3.1	133
35	Precipitation Extremes in Dynamically Downscaled Climate Scenarios over the Greater Horn of Africa. Atmosphere, 2018, 9, 112.	2.3	39
36	Comparison of the Performance of Six Drought Indices in Characterizing Historical Drought for the Upper Blue Nile Basin, Ethiopia. Geosciences (Switzerland), 2018, 8, 81.	2.2	108

#	Article	IF	CITATIONS
37	Downscaling Africa's Drought Forecasts through Integration of Indigenous and Scientific Drought Forecasts Using Fuzzy Cognitive Maps. Geosciences (Switzerland), 2018, 8, 135.	2.2	13
38	Building the vegetation drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: first results. GIScience and Remote Sensing, 2017, 54, 230-257.	5.9	37
39	Enhancing Dynamical Seasonal Predictions through Objective Regionalization. Journal of Applied Meteorology and Climatology, 2017, 56, 1431-1442.	1.5	2
40	Upper Blue Nile basin water budget from a multi-model perspective. Journal of Hydrology, 2017, 555, 535-546.	5.4	39
41	Climate change and population growth impacts on surface water supply and demand of Addis Ababa, Ethiopia. Climate Risk Management, 2017, 18, 21-33.	3.2	64
42	Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. Atmospheric Research, 2017, 186, 26-42.	4.1	119
43	Preliminary assessment of an integrated SMOS and MODIS application for global agricultural drought monitoring. , 2017, , .		5
44	Information Mining from Heterogeneous Data Sources: A Case Study on Drought Predictions. Information (Switzerland), 2017, 8, 79.	2.9	8
45	Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia. Remote Sensing, 2017, 9, 669.	4.0	168
46	Advancements in Satellite Remote Sensing for Drought Monitoring. Drought and Water Crises, 2017, , 225-258.	0.1	3
47	A hybrid approach for detecting corn and soybean phenology with time-series MODIS data. Remote Sensing of Environment, 2016, 181, 237-250.	11.0	102
48	The Grand Ethiopian Renaissance Dam: Source of Cooperation or Contention?. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	2.6	20
49	Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. , 2016, , .		6
50	Linking Seasonal Predictions to Decision-Making and Disaster Management in the Greater Horn of Africa. Bulletin of the American Meteorological Society, 2016, 97, ES89-ES92.	3.3	18
51	Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agricultural and Forest Meteorology, 2016, 218-219, 230-242.	4.8	228
52	Identifying the relationships of climate and physiological responses of a beech forest using the Standardised Precipitation Index: a case study for Slovakia. Journal of Hydrology and Hydromechanics, 2016, 64, 246-251.	2.0	15
53	Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US. Remote Sensing, 2015, 7, 951-970.	4.0	72
54	Drought Occurrence in Central European Mountainous Region (Tatra National Park, Slovakia) within the Period 1961–2010. Advances in Meteorology, 2015, 2015, 1-8.	1.6	24

#	Article	IF	CITATIONS
55	Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management, 2015, 160, 106-117.	5.6	207
56	Participatory Research Workshop on Seasonal Prediction of Hydroclimatic Extremes in the Greater Horn of Africa. Bulletin of the American Meteorological Society, 2015, 96, ES139-ES142.	3.3	16
57	Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 2015, 40, 39-54.	2.8	53
58	Assessing the Vegetation Condition Impacts of the 2011 Drought across the U.S. Southern Great Plains Using the Vegetation Drought Response Index (VegDRI). Journal of Applied Meteorology and Climatology, 2015, 54, 153-169.	1.5	43
59	Satellite-based Hybrid Drought Assessment using Vegetation Drought Response Index in South Korea (VegDRI-SKorea). Journal of the Korean Society of Agricultural Engineers, 2015, 57, 1-9.	0.1	4
60	Satelliteâ€based hybrid drought monitoring tool for prediction of vegetation condition in Eastern Africa: A case study for Ethiopia. Water Resources Research, 2014, 50, 2176-2190.	4.2	50
61	Drought Prediction System for Improved Climate Change Mitigation. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 4032-4037.	6.3	16
62	Improving drought risk modelling: using multiple periods of satellite data with ensembles of data mining algorithms. International Journal of Society Systems Science, 2014, 6, 143.	0.1	0
63	Drought information mining from satellite images for improved climate change mitigation. , 2012, , .		1
64	Assessment of Vegetation Response to Drought in Nebraska Using Terra-MODIS Land Surface Temperature and Normalized Difference Vegetation Index. GIScience and Remote Sensing, 2011, 48, 432-455.	5.9	49
65	Drought Monitoring in Food-Insecure Areas of Ethiopia by Using Satellite Technologies. Climate Change Management, 2011, , 183-200.	0.8	4
66	Potential extents for ENSO-driven hydrologic drought forecasts in the United States. Climatic Change, 2010, 101, 575-597.	3.6	49
67	The Vegetation Outlook (VegOut): A New Method for Predicting Vegetation Seasonal Greenness. GIScience and Remote Sensing, 2010, 47, 25-52.	5.9	40
68	The Application of Data Mining for Drought Monitoring and Prediction. , 2009, , 278-289.		4
69	Algorithm and Feature Selection for VegOut: A Vegetation Condition Prediction Tool. Lecture Notes in Computer Science, 2009, , 107-120.	1.3	Ο
70	The need for integration of drought monitoring tools for proactive food security management in subâ€Saharan Africa. Natural Resources Forum, 2008, 32, 265-279.	3.6	53
71	The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation. GIScience and Remote Sensing, 2008, 45, 16-46.	5.9	363
72	Climate Impacts on Hydrology in the Central United States: Application to Forecast Capability in the Republican River Basin. , 2008, , .		1

5

#	Article	IF	CITATIONS
73	The Vegetation Outlook (VegOut): A New Tool for Providing Outlooks of General Vegetation Conditions Using Data Mining Techniques. , 2007, , .		2
74	A new approach for predicting drought-related vegetation stress: Integrating satellite, climate, and biophysical data over the U.S. central plains. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59, 244-253.	11.1	87
75	Discovering Associations between Climatic and Oceanic Parameters to Monitor Drought in Nebraska Using Data-Mining Techniques. Journal of Climate, 2005, 18, 1541-1550.	3.2	26
76	Drought Monitoring Using Data Mining Techniques: A Case Study for Nebraska, USA. Natural Hazards, 2004, 33, 137-159.	3.4	62
77	Geospatial decision support for drought risk management. Communications of the ACM, 2003, 46, 35-37.	4.5	350
78	Spatio-temporal assessment of meteorological drought under the influence of varying record length: the case of Upper Blue Nile Basin, Ethiopia. Hydrological Sciences Journal, 0, , 1-16.	2.6	39