
## Zahid N Rabbani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4359738/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. Journal of Clinical<br>Investigation, 2008, 118, 3930-42.                                                                                                      | 8.2  | 1,225     |
| 2  | Regulation of HIF-1α Stability through S-Nitrosylation. Molecular Cell, 2007, 26, 63-74.                                                                                                                                                           | 9.7  | 399       |
| 3  | Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell, 2005, 8, 99-110.                                                                                                                                                     | 16.8 | 381       |
| 4  | In vivo selection of tumor-targeting RNA motifs. Nature Chemical Biology, 2010, 6, 22-24.                                                                                                                                                          | 8.0  | 238       |
| 5  | Radiation-induced hypoxia may perpetuate late normal tissue injury. International Journal of Radiation<br>Oncology Biology Physics, 2001, 50, 851-855.                                                                                             | 0.8  | 183       |
| 6  | A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD)<br>mimetic properties protects lungs from radiation-induced injury. Free Radical Biology and Medicine,<br>2002, 33, 857-863.                       | 2.9  | 180       |
| 7  | Expression of HIF-1α, CA IX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer. Lung Cancer, 2005, 49, 325-335.                                                                                                                    | 2.0  | 159       |
| 8  | Tumor Necrosis Factor-α Is a Potent Endogenous Mutagen that Promotes Cellular Transformation.<br>Cancer Research, 2006, 66, 11565-11570.                                                                                                           | 0.9  | 141       |
| 9  | Temporal Onset of Hypoxia and Oxidative Stress After Pulmonary Irradiation. International Journal of<br>Radiation Oncology Biology Physics, 2007, 68, 196-204.                                                                                     | 0.8  | 134       |
| 10 | Small Molecular Inhibitor of Transforming Growth Factor-Î <sup>2</sup> Protects Against Development of<br>Radiation-Induced Lung Injury. International Journal of Radiation Oncology Biology Physics, 2008, 71,<br>829-837.                        | 0.8  | 126       |
| 11 | Antitransforming growth factor–β antibody 1D11 ameliorates normal tissue damage caused by<br>high-dose radiation. International Journal of Radiation Oncology Biology Physics, 2006, 65, 876-881.                                                  | 0.8  | 120       |
| 12 | Enhancement of Hypoxia-Induced Tumor Cell Death <b> <i>In vitro</i> </b> and Radiation Therapy <b><br/><i>In vivo</i> </b> by Use of Small Interfering RNA Targeted to Hypoxia-Inducible Factor-1α. Cancer<br>Research, 2004, 64, 8139-8142.       | 0.9  | 118       |
| 13 | Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. International Journal of Radiation Oncology Biology Physics, 2003, 57, 1056-1066.                                                           | 0.8  | 117       |
| 14 | Using Biological Markers to Predict Risk of Radiation Injury. Seminars in Radiation Oncology, 2007, 17,<br>89-98.                                                                                                                                  | 2.2  | 104       |
| 15 | Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy. International Journal of Radiation Oncology Biology Physics, 2005, 62, 255-259.                                       | 0.8  | 100       |
| 16 | Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL<br>10150, protects lungs from radiation-induced injury. International Journal of Radiation Oncology<br>Biology Physics, 2007, 67, 573-580.       | 0.8  | 96        |
| 17 | Erythropoietin Blockade Inhibits the Induction of Tumor Angiogenesis and Progression. PLoS ONE, 2007, 2, e549.                                                                                                                                     | 2.5  | 93        |
| 18 | Antiangiogenic action of redox-modulating Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin,<br>MnTE-2-PyP5+, via suppression of oxidative stress in a mouse model of breast tumor. Free Radical<br>Biology and Medicine, 2009, 47, 992-1004. | 2.9  | 90        |

Zahid N Rabbani

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Stable RNA Interference–Mediated Suppression of Cyclophilin A Diminishes Non–Small-Cell Lung<br>Tumor Growth In vivo. Cancer Research, 2005, 65, 8853-8860.                                                                                      | 0.9  | 89        |
| 20 | Carbonic Anhydrase IX in Early-Stage Non–Small Cell Lung Cancer. Clinical Cancer Research, 2004, 10,<br>7925-7933.                                                                                                                               | 7.0  | 87        |
| 21 | Overexpression of extracellular superoxide dismutase reduces acute radiation induced lung toxicity.<br>BMC Cancer, 2005, 5, 59.                                                                                                                  | 2.6  | 87        |
| 22 | Cytokine profiling for prediction of symptomatic radiation-induced lung injury. International Journal of Radiation Oncology Biology Physics, 2005, 63, 1448-1454.                                                                                | 0.8  | 78        |
| 23 | A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness.<br>International Journal of Radiation Oncology Biology Physics, 2005, 63, 545-552.                                                                        | 0.8  | 73        |
| 24 | Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis. International Journal of<br>Radiation Oncology Biology Physics, 2012, 83, 740-748.                                                                                        | 0.8  | 71        |
| 25 | RNA Aptamer-targeted Inhibition of NF-κB Suppresses Non-small Cell Lung Cancer Resistance to<br>Doxorubicin. Molecular Therapy, 2008, 16, 66-73.                                                                                                 | 8.2  | 70        |
| 26 | Treatment with Imatinib in NSCLC is associated with decrease of phosphorylated PDGFR-Î <sup>2</sup> and VEGF expression, decrease in interstitial fluid pressure and improvement of oxygenation. British Journal of Cancer, 2006, 95, 1013-1019. | 6.4  | 69        |
| 27 | Soluble TGFβ TYPE II receptor gene therapy ameliorates acute radiation-induced pulmonary injury in rats. International Journal of Radiation Oncology Biology Physics, 2003, 57, 563-572.                                                         | 0.8  | 64        |
| 28 | Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radical Research, 2007, 41, 1273-1282.                                                                                   | 3.3  | 64        |
| 29 | Erythropoietin inhibits apoptosis in breast cancer cells via an Akt-dependent pathway without modulating in vivo chemosensitivity. Molecular Cancer Therapeutics, 2006, 5, 356-361.                                                              | 4.1  | 62        |
| 30 | ASSESSMENT OF THE PROTECTIVE EFFECT OF AMIFOSTINE ON RADIATION-INDUCED PULMONARY TOXICITY.<br>Experimental Lung Research, 2002, 28, 577-590.                                                                                                     | 1.2  | 60        |
| 31 | Human recombinant erythropoietin (rEpo) has no effect on tumour growth or angiogenesis. British<br>Journal of Cancer, 2005, 93, 1350-1355.                                                                                                       | 6.4  | 57        |
| 32 | Treatment with imatinib improves drug delivery and efficacy in NSCLC xenografts. British Journal of Cancer, 2007, 97, 735-740.                                                                                                                   | 6.4  | 57        |
| 33 | The protective effect of recombinant human keratinocyte growth factor on radiation-induced<br>pulmonary toxicity in rats. International Journal of Radiation Oncology Biology Physics, 2004, 60,<br>1520-1529.                                   | 0.8  | 49        |
| 34 | H1 RNA polymerase III promoter-driven expression of an RNA aptamer leads to high-level inhibition of intracellular protein activity. Nucleic Acids Research, 2006, 34, 3577-3584.                                                                | 14.5 | 49        |
| 35 | Radioprotection of Lungs by Amifostine is Associated with Reduction in Profibrogenic Cytokine<br>Activity. Radiation Research, 2002, 157, 656-660.                                                                                               | 1.5  | 45        |
| 36 | Carbonic anhydrase IX is a predictive marker of doxorubicin resistance in early-stage breast cancer<br>independent of HER2 and TOP2A amplification. British Journal of Cancer, 2012, 106, 916-922.                                               | 6.4  | 41        |

Zahid N Rabbani

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Role of Oxidative Stress in a Rat Model of Radiation-Induced Erectile Dysfunction. Journal of Sexual<br>Medicine, 2012, 9, 1535-1549.                                                                                 | 0.6 | 37        |
| 38 | The Role of Hyperthermia in Regional Alkylating Agent Chemotherapy. Clinical Cancer Research, 2004,<br>10, 5919-5929.                                                                                                 | 7.0 | 31        |
| 39 | Elevated CAIX Expression is Associated with an Increased Risk of Distant Failure in Early-Stage Cervical<br>Cancer. Biomarker Insights, 2008, 3, BMI.S570.                                                            | 2.5 | 30        |
| 40 | Noninvasive In vivo Detection of Glutathione Metabolism in Tumors. Cancer Research, 2005, 65, 10149-10153.                                                                                                            | 0.9 | 28        |
| 41 | Radiation-Induced Erectile Dysfunction Using Prostate-Confined Modern Radiotherapy in a Rat Model.<br>Journal of Sexual Medicine, 2011, 8, 2215-2226.                                                                 | 0.6 | 27        |
| 42 | Prognostic Significance of Carbonic Anhydrase IX (CA-IX), Endoglin (CD105) and<br>8-hydroxy-2′-deoxyguanosine (8-OHdG) in Breast Cancer Patients. Pathology and Oncology Research,<br>2011, 17, 593-603.              | 1.9 | 27        |
| 43 | Role of Vitamin D3 as a Sensitizer to Cryoablation in a Murine Prostate Cancer Model: Preliminary In<br>Vivo Study. Urology, 2010, 76, 764.e14-764.e20.                                                               | 1.0 | 23        |
| 44 | NF-κB inhibition by an adenovirus expressed aptamer sensitizes TNFα-induced apoptosis. Biochemical and<br>Biophysical Research Communications, 2007, 359, 475-480.                                                    | 2.1 | 20        |
| 45 | Her2/neu signaling blockade improves tumor oxygenation in a multifactorial fashion in Her2/neu+<br>tumors. Cancer Chemotherapy and Pharmacology, 2009, 63, 219-228.                                                   | 2.3 | 20        |
| 46 | Temporal expression of hypoxia-regulated genes is associated with early changes in redox status in irradiated lung. Free Radical Biology and Medicine, 2012, 53, 337-346.                                             | 2.9 | 19        |
| 47 | Sickle Erythrocytes Target Cytotoxics to Hypoxic Tumor Microvessels and Potentiate a Tumoricidal Response. PLoS ONE, 2013, 8, e52543.                                                                                 | 2.5 | 18        |
| 48 | Morphology of hypoxia following cryoablation in a prostate cancer murine model: Its relationship to necrosis, apoptosis and, microvessel density. Cryobiology, 2010, 61, 148-154.                                     | 0.7 | 17        |
| 49 | Phosphorylated epidermal growth factor receptor and cyclooxygenase-2 expression in localized non-small cell lung cancer. Medical Oncology, 2010, 27, 91-97.                                                           | 2.5 | 15        |
| 50 | <i>In vivo</i> MR studies of glycine and glutathione metabolism in a rat mammary tumor. NMR in Biomedicine, 2012, 25, 271-278.                                                                                        | 2.8 | 14        |
| 51 | Subcutaneous administration of bovine superoxide dismutase protects lungs from radiation-induced lung injury. Free Radical Research, 2015, 49, 1259-1268.                                                             | 3.3 | 12        |
| 52 | Mixing and delivery of multiple controlled oxygen environments to a single multiwell culture plate.<br>American Journal of Physiology - Cell Physiology, 2018, 315, C766-C775.                                        | 4.6 | 12        |
| 53 | Multiple Infusion Start Time Mass Spectrometry Imaging of Dynamic SIL-Glutathione Biosynthesis Using<br>Infrared Matrix-Assisted Laser Desorption Electrospray Ionization. Journal of Proteome Research,<br>2021, , . | 3.7 | 8         |
| 54 | Flow-Encoded Oxygen Control to Track the Time-Dependence of Molecular Changes Induced by Static or Cycling Hypoxia. Analytical Chemistry, 2019, 91, 15032-15039.                                                      | 6.5 | 4         |

| #  | Article                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Erythropoietin and Erythropoietin Receptor Expression in Early Stage Non-Small Cell Lung Cancer:<br>Prognostic Significance Blood, 2005, 106, 4258-4258. | 1.4 | 2         |