
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4359501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Applied Energy, 2015, 150, 36-49.	5.1	275
2	Scope-based carbon footprint analysis of U.S. residential and commercial buildings: An input–output hybrid life cycle assessment approach. Building and Environment, 2014, 72, 53-62.	3.0	188
3	Sustainability assessment of U.S. manufacturing sectors: an economic input output-based frontier approach. Journal of Cleaner Production, 2013, 53, 91-102.	4.6	171
4	Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives. Sustainability, 2017, 9, 706.	1.6	167
5	Integrating triple bottom line input–output analysis into life cycle sustainability assessment framework: the case for US buildings. International Journal of Life Cycle Assessment, 2014, 19, 1488-1505.	2.2	139
6	Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach. Resources, Conservation and Recycling, 2014, 82, 8-20.	5.3	137
7	Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies. Sustainable Production and Consumption, 2016, 6, 12-25.	5.7	130
8	Towards a triple bottom-line sustainability assessment of the U.S. construction industry. International Journal of Life Cycle Assessment, 2013, 18, 958-972.	2.2	118
9	Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles. International Journal of Life Cycle Assessment, 2016, 21, 1009-1034.	2.2	115
10	Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles. Sustainability, 2014, 6, 9305-9342.	1.6	109
11	Carbon footprint of construction industry: A global review and supply chain analysis. Renewable and Sustainable Energy Reviews, 2020, 124, 109783.	8.2	105
12	Cost premium prediction of certified green buildings: A neural network approach. Building and Environment, 2011, 46, 1081-1086.	3.0	100
13	Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S Journal of Cleaner Production, 2016, 112, 291-307.	4.6	99
14	Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries. Applied Energy, 2016, 184, 889-904.	5.1	96
15	Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision making method. Automation in Construction, 2014, 40, 33-43.	4.8	93
16	A fuzzy data envelopment analysis framework for dealing with uncertainty impacts of input–output life cycle assessment models on eco-efficiency assessment. Journal of Cleaner Production, 2016, 129, 622-636.	4.6	89
17	Carbon and energy footprints of electric delivery trucks: A hybrid multi-regional input-output life cycle assessment. Transportation Research, Part D: Transport and Environment, 2016, 47, 195-207.	3.2	87
18	Sustainability assessment of U.S. final consumption and investments: triple-bottom-line input–output analysis. Journal of Cleaner Production, 2014, 81, 234-243.	4.6	86

#	Article	IF	CITATIONS
19	Stochastic decision modeling for sustainable pavement designs. International Journal of Life Cycle Assessment, 2014, 19, 1185-1199.	2.2	84
20	Environmental sustainability benchmarking of the U.S. and Canada metropoles: An expert judgment-based multi-criteria decision making approach. Cities, 2015, 42, 31-41.	2.7	77
21	Emergy and end-point impact assessment of agricultural and food production in the United States: A supply chain-linked Ecologically-based Life Cycle Assessment. Ecological Indicators, 2016, 62, 117-137.	2.6	73
22	How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar. Applied Energy, 2019, 250, 461-477.	5.1	72
23	Eco-Efficiency of Construction Materials: Data Envelopment Analysis. Journal of Construction Engineering and Management - ASCE, 2012, 138, 733-741.	2.0	71
24	A Novel Life Cycle-based Principal Component Analysis Framework for Eco-efficiency Analysis: Case of the United States Manufacturing and Transportation Nexus. Journal of Cleaner Production, 2015, 92, 327-342.	4.6	71
25	Exploring the suitability of electric vehicles in the United States. Energy, 2017, 121, 631-642.	4.5	71
26	Evaluating environmental impacts of alternative construction waste management approaches using supply-chain-linked life-cycle analysis. Waste Management and Research, 2014, 32, 500-508.	2.2	70
27	Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy. Sustainable Production and Consumption, 2016, 8, 78-92.	5.7	70
28	Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options. Energy, 2016, 112, 715-728.	4.5	68
29	Eco-efficiency of electric vehicles in the United States: A life cycle assessment based principal component analysis. Journal of Cleaner Production, 2019, 212, 515-526.	4.6	66
30	Comparative sustainability assessment of warm-mix asphalts: A thermodynamic based hybrid life cycle analysis. Resources, Conservation and Recycling, 2012, 58, 18-24.	5.3	65
31	A system thinking approach for harmonizing smart and sustainable city initiatives with United Nations sustainable development goals. Sustainable Development, 2020, 28, 1347-1365.	6.9	62
32	A global, scope-based carbon footprint modeling for effective carbon reduction policies: Lessons from the Turkish manufacturing. Sustainable Production and Consumption, 2015, 1, 47-66.	5.7	61
33	Sustainability assessment and modeling based on supervised machine learning techniques: The case for food consumption. Journal of Cleaner Production, 2020, 251, 119661.	4.6	58
34	A comprehensive life cycle analysis of cofiring algae in a coal power plant as a solution for achieving sustainable energy. Energy, 2011, 36, 6352-6357.	4.5	55
35	Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building. Sustainability, 2016, 8, 89.	1.6	54
36	Material footprint of electric vehicles: A multiregional life cycle assessment. Journal of Cleaner Production, 2019, 209, 1033-1043.	4.6	54

#	Article	IF	CITATIONS
37	Linking national food production to global supply chain impacts for the energy-climate challenge: the cases of the EU-27 and Turkey. Journal of Cleaner Production, 2015, 108, 395-408.	4.6	52
38	A framework for water and carbon footprint analysis of national electricity production scenarios. Energy, 2017, 139, 406-421.	4.5	47
39	Ecologically based hybrid life cycle analysis of continuously reinforced concrete and hot-mix asphalt pavements. Transportation Research, Part D: Transport and Environment, 2012, 17, 86-90.	3.2	46
40	Assessing regional and global environmental footprints and value added of the largest food producers in the world. Resources, Conservation and Recycling, 2019, 144, 187-197.	5.3	46
41	A macro-level decision analysis of wind power as a solution for sustainable energy in the USA. International Journal of Sustainable Energy, 2015, 34, 629-644.	1.3	45
42	From green buildings to green supply chains. Management of Environmental Quality, 2017, 28, 532-548.	2.2	42
43	Well-to-wheel water footprints of conventional versus electric vehicles in the United States: A state-based comparative analysis. Journal of Cleaner Production, 2018, 204, 788-802.	4.6	39
44	Integrating expert weighting and multi-criteria decision making into eco-efficiency analysis: the case of US manufacturing. Journal of the Operational Research Society, 2016, 67, 616-628.	2.1	37
45	Green Concrete for a Circular Economy: A Review on Sustainability, Durability, and Structural Properties. Materials, 2021, 14, 351.	1.3	35
46	From sustainability assessment to sustainability management for policy development: The case for electric vehicles. Energy Conversion and Management, 2020, 216, 112937.	4.4	33
47	Sustainability Performance of European Smart Cities: A Novel DEA Approach with Double Frontiers. Sustainable Cities and Society, 2022, 81, 103777.	5.1	33
48	5G Networks Towards Smart and Sustainable Cities: A Review of Recent Developments, Applications and Future Perspectives. IEEE Access, 2022, 10, 2987-3006.	2.6	32
49	Sustainability Assessment of U.S. Construction Sectors: Ecosystems Perspective. Journal of Construction Engineering and Management - ASCE, 2012, 138, 918-922.	2.0	31
50	Khalasa date palm leaf fiber as a potential reinforcement for polymeric composite materials. Composite Structures, 2021, 265, 113501.	3.1	30
51	Environmental efficiency of electric vehicles in Europe under various electricity production mix scenarios. Journal of Cleaner Production, 2022, 335, 130291.	4.6	28
52	Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK. Resources, Conservation and Recycling, 2017, 125, 251-263.	5.3	27
53	Material dependence of national energy development plans: The case for Turkey and United Kingdom. Journal of Cleaner Production, 2018, 200, 490-500.	4.6	27
54	Circular economy application for a Green Stadium construction towards sustainable FIFA world cup Qatar 2022â,,¢. Environmental Impact Assessment Review, 2021, 87, 106543.	4.4	27

#	Article	IF	CITATIONS
55	Life cycle sustainability assessment of autonomous heavyâ€duty trucks. Journal of Industrial Ecology, 2020, 24, 149-164.	2.8	26
56	How circular design can contribute to social sustainability and legacy of the FIFA World Cup Qatar 2022â,,¢? The case of innovative shipping container stadium. Environmental Impact Assessment Review, 2021, 91, 106665.	4.4	24
57	A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul. Sustainability, 2015, 7, 11050-11067.	1.6	23
58	How ecoâ€efficient are electric vehicles across Europe? A regionalized life cycle assessmentâ€based ecoâ€efficiency analysis. Sustainable Development, 2021, 29, 941-956.	6.9	23
59	Supply chain-linked sustainability assessment of the US manufacturing: An ecosystem perspective. Sustainable Production and Consumption, 2016, 5, 65-81.	5.7	21
60	A model for estimating the carbon footprint of maritime transportation of Liquefied Natural Gas under uncertainty. Sustainable Production and Consumption, 2021, 27, 1602-1613.	5.7	20
61	The Adoption of Electric Vehicles in Qatar Can Contribute to Net Carbon Emission Reduction but Requires Strong Government Incentives. Vehicles, 2021, 3, 618-635.	1.7	20
62	Sustainability Metrics for Performance-Based Seismic Bridge Response. Journal of Structural Engineering, 2016, 142, .	1.7	17
63	A frontierâ€based managerial approach for relative sustainability performance assessment of the world's airports. Sustainable Development, 2021, 29, 89-107.	6.9	13
64	A mixed model-based Johnson's relative weights for eco-efficiency assessment: The case for global food consumption. Environmental Impact Assessment Review, 2021, 89, 106588.	4.4	12
65	Investigating the role of stakeholder engagement for more resilient vaccine supply chains during COVID-19. Operations Management Research, 0, , .	5.0	12
66	How FIFA World Cup 2022â,,¢ can meet the carbon neutral commitments and the United Nations 2030 Agenda for Sustainable Development?: Reflections from the tree nursery project in Qatar. Sustainable Development, 0, , .	6.9	11
67	A systematic review for sustainability of global liquified natural gas industry: A 10-year update. Energy Strategy Reviews, 2021, 38, 100768.	3.3	9
68	Congestion Relief Based on Intelligent Transportation Systems in Florida. Transportation Research Record, 2013, 2380, 81-89.	1.0	8
69	A novel approach for developing composite eco-efficiency indicators: The case for US food consumption. Journal of Cleaner Production, 2021, 299, 126931.	4.6	8
70	Selection of alternative fuel taxis: a hybridized approach of life cycle sustainability assessment and multi-criteria decision making with neutrosophic sets. International Journal of Sustainable Transportation, 2022, 16, 833-846.	2.1	7
71	How ecoefficient is European food consumption? A frontierâ€based multiregional input–output analysis. Sustainable Development, 2022, 30, 817-832.	6.9	6
72	Life Cycle Sustainability Assessment of Sport Utility Vehicles: The Case for Qatar. Advances in Intelligent Systems and Computing, 2020, , 279-287.	0.5	5

#	Article	IF	CITATIONS
73	Supply Chain Linked Sustainability Assessment of Electric Vehicles: the Case for Qatar. , 2019, , .		4
74	Ridge Penalization-based weighting approach for Eco-Efficiency assessment: The case in the food industry in the United States. IOP Conference Series: Materials Science and Engineering, 2020, 947, 012003.	0.3	4
75	A Novel Hybrid Life Cycle Assessment Approach to Air Emissions and Human Health Impacts of Liquefied Natural Gas Supply Chain. Energies, 2021, 14, 6278.	1.6	4
76	Mode-specific eco-efficiency analysis of the freight transportation in the USA: an integrated life cycle assessment and linear programming approach. World Review of Intermodal Transportation Research, 2016, 6, 16.	0.2	3
77	Sustainable Transportation in Qatar. , 2021, , .		3
78	How Can Collaborative Circular Economy Practices in Modular Construction Help Fédération Internationale de Football Association World Cup Qatar 2022 to Achieve Its Quest for Sustainable Development and Ecological Systems?. Frontiers in Sustainability, 2021, 2, .	1.3	3
79	Using Data Analytics and Visualization Dashboard for Engineering, Procurement, and Construction Project's Performance Assessment. , 2021, , .		2
80	Life Cycle Air Emissions and Social Human Health Impact Assessment of Liquified Natural Gas Maritime Transport. Energies, 2021, 14, 6208.	1.6	2
81	Developing an Interactive Data Visualization Platform to Present the Adaption of Electrical Vehicles in Washington, California and New York. , 2020, , .		1
82	How sustainable is liquefied natural gas supply chain? An integrated life cycle sustainability assessment model. Energy Conversion and Management: X, 2022, 15, 100246.	0.9	1
83	Carbon Footprint: Liquefaction Effects on a Private Residence. , 2016, , .		0
84	Exploring the Social, Economic and Environmental Footprint of Food Consumption: A Supply Chain-linked Sustainability Assessment. , 2019, , .		0
85	Environmental, Economic, and Social Life Cycle Impacts of Alternative Fuel Buses: the Case for Qatar. , 2021, , .		0