List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4359415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002, 81, 1869-1871.	1.5	1,400
2	Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Progress in Materials Science, 2009, 54, 1-67.	16.0	582
3	Metal oxide nanocrystals for gas sensing. , 0, , .		451
4	UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sensors and Actuators B: Chemical, 2001, 78, 73-77.	4.0	249
5	Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Sensors and Actuators B: Chemical, 2000, 65, 260-263.	4.0	214
6	Nanostructured ZnO chemical gas sensors. Ceramics International, 2015, 41, 14239-14244.	2.3	193
7	The Role of Surface Oxygen Vacancies in the NO ₂ Sensing Properties of SnO ₂ Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 19540-19546.	1.5	181
8	TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties. Sensors, 2013, 13, 14813-14838.	2.1	173
9	Synthesis and characterization of semiconducting nanowires for gas sensing. Sensors and Actuators B: Chemical, 2007, 121, 208-213.	4.0	163
10	Metal oxide nanoscience and nanotechnology for chemical sensors. Sensors and Actuators B: Chemical, 2013, 179, 3-20.	4.0	153
11	Investigation on the O3 sensitivity properties of WO3 thin films prepared by sol–gel, thermal evaporation and r.f. sputtering techniques. Sensors and Actuators B: Chemical, 2000, 64, 182-188.	4.0	148
12	Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts. Applied Physics Letters, 2005, 86, 011923.	1.5	133
13	Controlled Growth and Sensing Properties of In ₂ O ₃ Nanowires. Crystal Growth and Design, 2007, 7, 2500-2504.	1.4	130
14	A new technique for growing large surface area SnO2thin film (RGTO technique). Semiconductor Science and Technology, 1990, 5, 1231-1233.	1.0	123
15	Nanocomposites SnO2/Fe2O3: Sensor and catalytic properties. Sensors and Actuators B: Chemical, 2006, 118, 208-214.	4.0	117
16	Characterization of a nanosized TiO2 gas sensor. Scripta Materialia, 1996, 7, 709-718.	0.5	114
17	Metal oxide nanocrystals for gas sensing. Sensors and Actuators B: Chemical, 2005, 109, 2-6.	4.0	113
18	Tin oxide nanobelts electrical and sensing properties. Sensors and Actuators B: Chemical, 2005, 111-112, 2-6.	4.0	112

#	Article	IF	CITATIONS
19	Photosensitivity activation of SnO2 thin film gas sensors at room temperature. Sensors and Actuators B: Chemical, 1996, 31, 99-103.	4.0	109
20	Nanostructured mixed oxides compounds for gas sensing applications. Sensors and Actuators B: Chemical, 2002, 84, 26-32.	4.0	107
21	Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol. Sensors and Actuators B: Chemical, 2003, 96, 498-503.	4.0	103
22	A novel porous silicon sensor for detection of sub-ppm NO2 concentrations. Sensors and Actuators B: Chemical, 2001, 77, 62-66.	4.0	102
23	Reduced graphene oxide/ZnO nanocomposite for application in chemical gas sensors. RSC Advances, 2016, 6, 34225-34232.	1.7	101
24	Nanocrystalline Metal Oxides from the Injection of Metal Oxide Sols in Coordinating Solutions: Synthesis, Characterization, Thermal Stabilization, Device Processing, and Gas-Sensing Properties. Advanced Functional Materials, 2006, 16, 1488-1498.	7.8	97
25	Methods for the preparation of NO, NO2 and H2 sensors based on tin oxide thin films, grown by means of the r.f. magnetron sputtering technique. Sensors and Actuators B: Chemical, 1992, 8, 79-88.	4.0	96
26	New label free CA125 detection based on gold nanostructured screen-printed electrode. Sensors and Actuators B: Chemical, 2013, 179, 194-200.	4.0	96
27	Defect study of SnO2 nanostructures by cathodoluminescence analysis: Application to nanowires. Sensors and Actuators B: Chemical, 2007, 126, 6-12.	4.0	93
28	Titanium dioxide thin films prepared for alcohol microsensor applications. Sensors and Actuators B: Chemical, 2000, 66, 139-141.	4.0	90
29	The aging effect on SnO2–Au thin film sensors: electrical and structural characterization. Thin Solid Films, 2000, 371, 249-253.	0.8	89
30	Data preprocessing enhances the classification of different brands of Espresso coffee with an electronic nose. Sensors and Actuators B: Chemical, 2000, 69, 397-403.	4.0	85
31	Gas-sensitive properties of thin film heterojunction structures based on Fe2O3–In2O3 nanocomposites. Sensors and Actuators B: Chemical, 2003, 93, 422-430.	4.0	85
32	Semiconductor MoO3–TiO2 thin film gas sensors. Sensors and Actuators B: Chemical, 2001, 77, 472-477.	4.0	83
33	Single crystal ZnO nanowires as optical and conductometric chemical sensor. Journal Physics D: Applied Physics, 2007, 40, 7255-7259.	1.3	82
34	Sensitivity enhancement towards ethanol and methanol of TiO2 films doped with Pt and Nb. Sensors and Actuators B: Chemical, 2000, 64, 169-174.	4.0	81
35	Multiparametric Porous Silicon Sensors. Sensors, 2002, 2, 121-126.	2.1	81
36	In2O3 nanowires for gas sensors: morphology and sensing characterisation. Thin Solid Films, 2007, 515, 8356-8359.	0.8	81

#	Article	IF	CITATIONS
37	Solvothermal, Chloroalkoxide-based Synthesis of Monoclinic WO ₃ Quantum Dots and Gas-Sensing Enhancement by Surface Oxygen Vacancies. ACS Applied Materials & Interfaces, 2014, 6, 16808-16816.	4.0	78
38	Complex chemical pattern recognition with sensor array: the discrimination of vintage years of wine. Sensors and Actuators B: Chemical, 1995, 25, 801-804.	4.0	71
39	Carbon monoxide response of molybdenum oxide thin films deposited by different techniques. Sensors and Actuators B: Chemical, 2000, 68, 168-174.	4.0	71
40	Synthesis and Gas-Sensing Properties of Pd-Doped SnO ₂ Nanocrystals. A Case Study of a General Methodology for Doping Metal Oxide Nanocrystals. Crystal Growth and Design, 2008, 8, 1774-1778.	1.4	69
41	Functionalised zinc oxide nanowire gas sensors: Enhanced NO ₂ gas sensor response by chemical modification of nanowire surfaces. Beilstein Journal of Nanotechnology, 2012, 3, 368-377.	1.5	69
42	Selectivity enhancement of SnO2 sensors by means of operating temperature modulation. Thin Solid Films, 2002, 418, 2-8.	0.8	68
43	Luminescence response of ZnO nanowires to gas adsorption. Sensors and Actuators B: Chemical, 2009, 140, 461-466.	4.0	65
44	TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates. RSC Advances, 2011, 1, 1038.	1.7	65
45	Structural and gas response characterization of nano-size SnO2 films deposited by SILD method. Sensors and Actuators B: Chemical, 2003, 96, 602-609.	4.0	62
46	Thin-film gas sensor implemented on a low-power-consumption micromachined silicon structure. Sensors and Actuators B: Chemical, 1998, 49, 88-92.	4.0	60
47	Front-side micromachined porous silicon nitrogen dioxide gas sensor. Thin Solid Films, 2001, 391, 261-264.	0.8	59
48	The features of thin film and ceramic sensors at the detection of CO and NO2. Sensors and Actuators B: Chemical, 2000, 68, 344-350.	4.0	58
49	Gas detection with a porous silicon based sensor. Sensors and Actuators B: Chemical, 2000, 65, 257-259.	4.0	57
50	On the mechanism of photoluminescence quenching in tin dioxide nanowires by NO ₂ adsorption. New Journal of Physics, 2008, 10, 043013.	1.2	57
51	Metal oxide nanowires: Preparation and application in gas sensing. Journal of Molecular Catalysis A, 2009, 305, 170-177.	4.8	57
52	Cavitands as selective materials for QMB sensors for nitrobenzene and other aromatic vapours. Sensors and Actuators B: Chemical, 1993, 13, 302-304.	4.0	56
53	Layered WO3/ZnO/36° LiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity. Sensors and Actuators B: Chemical, 2006, 117, 442-450.	4.0	56
54	Preparation of Radial and Longitudinal Nanosized Heterostructures of In ₂ O ₃ and SnO ₂ . Nano Letters, 2007, 7, 3553-3558.	4.5	56

#	Article	IF	CITATIONS
55	Gas sensing characteristics of Fe-doped tungsten oxide thin films. Sensors and Actuators B: Chemical, 2012, 168, 345-353.	4.0	56
56	Indium oxide quasi-monodimensional low temperature gas sensor. Sensors and Actuators B: Chemical, 2006, 118, 204-207.	4.0	55
57	A novel PVD technique for the preparation of SnO2 thin films as C2H5OH sensors. Sensors and Actuators B: Chemical, 1992, 7, 721-726.	4.0	54
58	Metal Oxide Nanowire and Thin-Film-Based Gas Sensors for Chemical Warfare Simulants Detection. IEEE Sensors Journal, 2008, 8, 735-742.	2.4	54
59	Model and Experimental Characterization of the Dynamic Behavior of Low-Power Carbon Monoxide MOX Sensors Operated With Pulsed Temperature Profiles. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 1324-1332.	2.4	54
60	Fabrication and investigation of gas sensing properties of Nb-doped TiO ₂ nanotubular arrays. Nanotechnology, 2012, 23, 235706.	1.3	51
61	Very low power consumption micromachined CO sensors. Sensors and Actuators B: Chemical, 1999, 55, 140-146.	4.0	50
62	Orthorhombic Pbcn SnO2 nanowires for gas sensing applications. Journal of Crystal Growth, 2008, 310, 253-260.	0.7	49
63	On the role of catalytic additives in gas-sensitivity of SnO2-Mo based thin film sensors. Sensors and Actuators B: Chemical, 2001, 77, 268-274.	4.0	48
64	Effect of nickel ions on sensitivity of In2O3 thin film sensors to NO2. Sensors and Actuators B: Chemical, 1999, 57, 153-158.	4.0	47
65	Metal-oxide nanowire sensors for CO detection: Characterization and modeling. Sensors and Actuators B: Chemical, 2010, 148, 283-291.	4.0	47
66	Gold-catalysed porous silicon for NOx sensing. Sensors and Actuators B: Chemical, 2000, 68, 74-80.	4.0	46
67	Semiconducting tin oxide nanowires and thin films for Chemical Warfare Agents detection. Thin Solid Films, 2009, 517, 6156-6160.	0.8	46
68	Conductivity and work function ozone sensors based on indium oxide. Sensors and Actuators B: Chemical, 1998, 49, 63-67.	4.0	45
69	Cr-inserted TiO2 thin films for chemical gas sensors. Sensors and Actuators B: Chemical, 2007, 128, 312-319.	4.0	44
70	SnO>tex<\$_2\$>/tex <rgto 2004,="" 4,<br="" activation="" co="" for="" ieee="" journal,="" monitoring.="" sensors="" uv="">17-20.</rgto>	2.4	43
71	Tailoring the textured surface of porous nanostructured NiO thin films for the detection of pollutant gases. Thin Solid Films, 2015, 583, 233-238.	0.8	43
72	One-dimensional nanostructured oxides for thermoelectric applications and excitonic solar cells. Nano Energy, 2012, 1, 372-390.	8.2	41

#	Article	IF	CITATIONS
73	Organotin films deposited by laser-induced CVD as active layers in chemical gas sensors. Thin Solid Films, 1998, 323, 291-295.	0.8	40
74	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 741-744.	1.1	40
75	Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases. Sensors and Actuators B: Chemical, 2008, 130, 567-573.	4.0	40
76	p-Type copper aluminum oxide thin films for gas-sensing applications. Sensors and Actuators B: Chemical, 2015, 209, 287-296.	4.0	40
77	ZnO / TiO 2 nanonetwork as efficient photoanode in excitonic solar cells. Applied Physics Letters, 2009, 95, .	1.5	39
78	A time delay neural network for estimation of gas concentrations in a mixture. Sensors and Actuators B: Chemical, 2000, 65, 267-269.	4.0	38
79	Nanocrystals as Very Active Interfaces:  Ultrasensitive Room-Temperature Ozone Sensors with In ₂ O ₃ Nanocrystals Prepared by a Low-Temperature Solâ~Gel Process in a Coordinating Environment. Journal of Physical Chemistry C, 2007, 111, 13967-13971.	1.5	38
80	SnO2:Sb – A new material for high-temperature MEMS heater applications: Performance and limitations. Sensors and Actuators B: Chemical, 2007, 124, 421-428.	4.0	38
81	CO and NO2 response of tin oxide silicon doped thin films. Sensors and Actuators B: Chemical, 2001, 76, 270-274.	4.0	37
82	Electrical and structural properties of RGTO-In2O3 sensors for ozone detection. Sensors and Actuators B: Chemical, 1999, 57, 188-191.	4.0	36
83	Gas sensitive light emission properties of tin oxide and zinc oxide nanobelts. Journal of Non-Crystalline Solids, 2006, 352, 1457-1460.	1.5	35
84	Gas response times of nano-scale SnO2 gas sensors as determined by the moving gas outlet technique. Sensors and Actuators B: Chemical, 2007, 126, 174-180.	4.0	35
85	Direct integration of metal oxide nanowires into an effective gas sensing device. Nanotechnology, 2010, 21, 145502.	1.3	35
86	Influence of the completion of oxidation on the long-term response of RGTO SnO2 gas sensors. Sensors and Actuators B: Chemical, 2000, 66, 40-42.	4.0	34
87	Pd- and Ca-doped iron oxide for ethanol vapor sensing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 139, 41-47.	1.7	34
88	Interactions of nanocrystalline tin oxide powder with NO2: A Raman spectroscopic study. Sensors and Actuators B: Chemical, 2007, 126, 1-5.	4.0	34
89	Chemical synthesis of In2O3 nanocrystals and their application in highly performing ozone-sensing devices. Sensors and Actuators B: Chemical, 2008, 130, 483-487.	4.0	34
90	Colloidal Counterpart of the TiO ₂ -Supported V ₂ O ₅ System: A Case Study of Oxide-on-Oxide Deposition by Wet Chemical Techniques. Synthesis, Vanadium Speciation, and Gas-Sensing Enhancement. Journal of Physical Chemistry C, 2013, 117, 20697-20705.	1.5	34

#	Article	IF	CITATIONS
91	A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors. Beilstein Journal of Nanotechnology, 2016, 7, 1421-1427.	1.5	34
92	Kelvin probe as an effective tool to develop sensitive p-type CuO gas sensors. Sensors and Actuators B: Chemical, 2016, 222, 1257-1263.	4.0	34
93	Surface Ionization Gas Detection on Platinum and Metal Oxide Surfaces. IEEE Sensors Journal, 2009, 9, 1727-1733.	2.4	33
94	Multiparametric porous silicon gas sensors with improved quality and sensitivity. Physica Status Solidi A, 2003, 197, 523-527.	1.7	32
95	Room-temperature gas sensing based on visible photoluminescence properties of metal oxide nanobelts. Journal of Optics, 2006, 8, S585-S588.	1.5	32
96	Gas sensing properties of zinc oxide nanostructures prepared by thermal evaporation. Applied Physics A: Materials Science and Processing, 2007, 88, 45-48.	1.1	31
97	Nanowires of metal oxides for gas sensing applications. Surface and Interface Analysis, 2008, 40, 575-578.	0.8	31
98	Hydrogen and humidity sensing properties of C60 thin films. Synthetic Metals, 1996, 77, 273-275.	2.1	30
99	Monitoring plants health in greenhouse for space missions. Sensors and Actuators B: Chemical, 2005, 108, 278-284.	4.0	30
100	Insight into the Formation Mechanism of One-Dimensional Indium Oxide Wires. Crystal Growth and Design, 2010, 10, 140-145.	1.4	30
101	Synthesis of self-ordered and well-aligned Nb ₂ O ₅ nanotubes. CrystEngComm, 2014, 16, 10273-10279.	1.3	30
102	Transfer of CVD-grown graphene for room temperature gas sensors. Nanotechnology, 2017, 28, 414001.	1.3	30
103	Performance evaluation of an SnO2-based sensor array for the quantitative measurement of mixtures of H2S and NO2. Sensors and Actuators B: Chemical, 1994, 20, 217-224.	4.0	29
104	Monitoring penetration of ethanol in a porous silicon microcavity by photoluminescence interferometry. Applied Physics Letters, 2001, 78, 3744-3746.	1.5	29
105	Exploratory data analysis for industrial safety application. Sensors and Actuators B: Chemical, 2008, 131, 100-109.	4.0	29
106	Capacitive humidity sensor with controlled performances, based on porous Al2O3 thin film growm on SiO2-Si substrate. Sensors and Actuators B: Chemical, 1994, 19, 551-553.	4.0	27
107	Plasma-induced enhancement of UV photoluminescence in ZnO nanowires. CrystEngComm, 2013, 15, 7981.	1.3	27
108	Integration of ZnO and CuO nanowires into a thermoelectric module. Beilstein Journal of Nanotechnology, 2014, 5, 927-936.	1.5	27

#	Article	IF	CITATIONS
109	Polyphosphazene membrane as a very sensitive resistive and capacitive humidity sensor. Sensors and Actuators B: Chemical, 1996, 35, 99-102.	4.0	26
110	Pt doping triggers growth of TiO2 nanorods: nanocomposite synthesis and gas-sensing properties. CrystEngComm, 2012, 14, 3882.	1.3	26
111	Highly conductive titanium oxide nanotubes chemical sensors. Microporous and Mesoporous Materials, 2015, 208, 165-170.	2.2	26
112	Large surface area biphase titania for chemical sensing. Sensors and Actuators B: Chemical, 2015, 209, 1091-1096.	4.0	26
113	Tin Oxide Nanowires Decorated with Ag Nanoparticles for Visible Light-Enhanced Hydrogen Sensing at Room Temperature: Bridging Conductometric Gas Sensing and Plasmon-Driven Catalysis. Journal of Physical Chemistry C, 2018, 122, 5026-5031.	1.5	26
114	Study of the effect of the sensor operating temperature on SnO2-based sensor-array performance. Sensors and Actuators B: Chemical, 1995, 23, 187-191.	4.0	25
115	Catalytic enhancement of SnO2 gas sensors as seen by the moving gas outlet method. Sensors and Actuators B: Chemical, 2008, 130, 193-199.	4.0	25
116	Vertically Aligned TiO ₂ Nanotubes on Plastic Substrates for Flexible Solar Cells. Small, 2011, 7, 2437-2442.	5.2	25
117	Sensitivity of Porous Silicon Photoluminescence to Low Concentrations of CH4 and CO. Journal of Porous Materials, 2000, 7, 287-290.	1.3	24
118	Oxygen gas sensing properties of undoped and Li-doped SnO2 thin films. Sensors and Actuators B: Chemical, 1993, 13, 117-120.	4.0	23
119	Frequency effect on highly sensitive No2 sensors based on RGTO SnO2(Al) thin films. Sensors and Actuators B: Chemical, 1994, 19, 497-499.	4.0	22
120	Monitoring reliability of sensors in an array by neural networks. Sensors and Actuators B: Chemical, 2000, 67, 128-133.	4.0	22
121	Synthesis of self-assembled chain-like ZnO nanostructures on stiff and flexible substrates. CrystEngComm, 2013, 15, 2881.	1.3	22
122	Metal oxide nanowire chemical and biochemical sensors. Journal of Materials Research, 2013, 28, 2911-2931.	1.2	22
123	Quantification of H2S and NO2 using gas sensor arrays and an artificial neural network. Sensors and Actuators B: Chemical, 1997, 43, 235-238.	4.0	21
124	Square and collinear four probe array and Hall measurements on metal oxide thin film gas sensors. Sensors and Actuators B: Chemical, 1998, 53, 69-75.	4.0	21
125	Preparation and characterisation of titanium–tungsten sensors. Sensors and Actuators B: Chemical, 2000, 65, 264-266.	4.0	21
126	SnO2/Fe2O3 nanocomposites: Ethanol-sensing performance and catalytic activity for oxidation of ethanol. Inorganic Materials, 2006, 42, 1088-1093.	0.2	21

#	Article	IF	CITATIONS
127	Surface Modification of TiO ₂ Nanocrystals by WO _{<i>x</i>} Coating or Wrapping: Solvothermal Synthesis and Enhanced Surface Chemistry. ACS Applied Materials & Interfaces, 2015, 7, 6898-6908.	4.0	21
128	Evidence of catalytic activation of anatase nanocrystals by vanadium oxide surface layer: Acetone and ethanol sensing properties. Sensors and Actuators B: Chemical, 2015, 217, 193-197.	4.0	21
129	Metal Oxide Nanowire Preparation and Their Integration into Chemical Sensing Devices at the SENSOR Lab in Brescia. Sensors, 2017, 17, 1000.	2.1	21
130	A systematic investigation on the use of time-dependent sensor signals in signal-processing techniques. Sensors and Actuators B: Chemical, 1995, 25, 785-789.	4.0	20
131	Influence of gaseous species transport on the response of solid state gas sensors within enclosures. Sensors and Actuators B: Chemical, 2001, 78, 144-150.	4.0	19
132	Composition influence on the properties of sputtered Snî—,Wî—,O films. Sensors and Actuators B: Chemical, 2003, 89, 225-231.	4.0	19
133	SnO[sub 2] lithographic processing for nanopatterned gas sensors. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2784.	1.6	19
134	Iron-doped indium oxide by modified RGTO deposition for ozone sensing. Sensors and Actuators B: Chemical, 2006, 118, 221-225.	4.0	19
135	Identification and quantification of methane and ethyl alcohol in an environment at variable humidity by an hybrid array. Sensors and Actuators B: Chemical, 1997, 44, 517-520.	4.0	18
136	SnO2 sub-micron wires for gas sensors. Microelectronic Engineering, 2005, 78-79, 178-184.	1.1	18
137	Pt/Ga2O3/SiC MRISiC devices: a study of the hydrogen response. Journal Physics D: Applied Physics, 2005, 38, 754-763.	1.3	18
138	TiO2 colloidal nanocrystals surface modification by V2O5 species: Investigation by 47,49Ti MAS-NMR and H2, CO and NO2 sensing properties. Applied Surface Science, 2015, 351, 1169-1173.	3.1	18
139	Functional nanowires of tin oxide. Applied Physics A: Materials Science and Processing, 2007, 89, 73-76.	1.1	17
140	Correlation between atomic composition and gas sensing properties in tungsten–iron oxide thin films. Sensors and Actuators B: Chemical, 2007, 127, 22-28.	4.0	17
141	Exploitation of a low-cost electronic system, designed for low-conductance and wide-range measurements, to control metal oxide gas sensors with temperature profile protocols. Sensors and Actuators B: Chemical, 2012, 175, 149-156.	4.0	17
142	Fabrication of pure and Nb–TiO2 nanotubes and their functional properties. Journal of Alloys and Compounds, 2012, 536, S488-S490.	2.8	17
143	Micromachined gas sensors for environmental pollutants. Microsystem Technologies, 1999, 6, 54-59.	1.2	16
144	Oxide Nanobelts as Conductometric Gas Sensors. Materials and Manufacturing Processes, 2006, 21, 229-232.	2.7	16

#	Article	IF	CITATIONS
145	Gas Sensing Properties of Hydrogenated Amorphous Silicon Films. IEEE Sensors Journal, 2007, 7, 1506-1512.	2.4	15
146	Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode. Optics Express, 2015, 23, 18937.	1.7	15
147	Towards a Deeper Comprehension of the Interaction Mechanisms between Mesoporous Silicon and NO2. Physica Status Solidi A, 2000, 182, 465-471.	1.7	14
148	Photo-Induced Unpinning of Fermi Level in WO3. Sensors, 2005, 5, 594-603.	2.1	14
149	Cr–Sn oxide thin films: Electrical and spectroscopic characterisation with CO, NO2, NH3 and ethanol. Sensors and Actuators B: Chemical, 2006, 118, 142-148.	4.0	14
150	Influence of iron addition on ethanol and CO sensing properties of tin oxide prepared with the RGTO technique. Sensors and Actuators B: Chemical, 2006, 115, 561-566.	4.0	14
151	NO2 adsorption effects on $p+\hat{a}\in$ n silicon junctions surrounded by a porous layer. Sensors and Actuators B: Chemical, 2008, 134, 922-927.	4.0	14
152	Vertically Coupling ZnO Nanorods onto MoS2 Flakes for Optical Gas Sensing. Chemosensors, 2020, 8, 19.	1.8	14
153	Improvement in signal evaluation methods for semiconductor gas sensors. Sensors and Actuators B: Chemical, 1995, 27, 267-270.	4.0	13
154	Seebeck effect in ZnO nanowires for micropower generation. Procedia Engineering, 2011, 25, 1481-1484.	1.2	13
155	Thermal treatment stabilization processes in SnO/sub 2/ thin films catalyzed with Au and Pt. IEEE Sensors Journal, 2002, 2, 102-106.	2.4	12
156	Influence of metallic impurities on response kinetics in metal oxide thin film gas sensors. Sensors and Actuators B: Chemical, 2004, 103, 448-456.	4.0	12
157	Planar Thermoelectric Generator based on Metal-Oxide Nanowires for Powering Autonomous Microsystems. Procedia Engineering, 2012, 47, 346-349.	1.2	12
158	On the alignment of ZnO nanowires by Langmuir – Blodgett technique for sensing application. Applied Surface Science, 2020, 528, 146959.	3.1	12
159	Metal Oxides Monoâ€Đimensional Nanostructures for Gas Sensing and Light Emission. Journal of the American Ceramic Society, 2012, 95, 831-850.	1.9	11
160	Chemoresistive sensing of light alkanes with SnO2 nanocrystals: a DFT-based insight. Physical Chemistry Chemical Physics, 2009, 11, 3634.	1.3	10
161	Electrical-Based Gas Sensing. , 2009, , 1-61.		9
162	Two step, hydrolytic-solvothermal synthesis of redispersible titania nanocrystals and their gas-sensing properties. Journal of Sol-Gel Science and Technology, 2011, 60, 254-259.	1.1	9

#	Article	IF	CITATIONS
163	Synthesis and electrochemical study of a hybrid structure based on PDMS-TEOS and titania nanotubes for biomedical applications. Nanotechnology, 2014, 25, 365701.	1.3	9
164	Oxide nanocrystals from a low-temperature, self-limiting sol–gel transition in a coordinating environment: Nanocrystal synthesis, processing of gas-sensing devices and application to organic compounds. Sensors and Actuators B: Chemical, 2007, 126, 163-167.	4.0	7
165	Model and experimental characterization of dynamic behaviour of low power Carbon Monoxide MOX sensors with pulsed temperature profile. , 2008, , .		7
166	Mineralization of 3D Osteogenic Model Based on Gelatin-Dextran Hybrid Hydrogel Scaffold Bioengineered with Mesenchymal Stromal Cells: A Multiparametric Evaluation. Materials, 2021, 14, 3852.	1.3	7
167	Study of the Degradation of Biobased Plastic after Stress Tests in Water. Coatings, 2021, 11, 1330.	1.2	7
168	High-precision neural pre-processing for signal analysis of a sensor array. Sensors and Actuators B: Chemical, 1998, 47, 77-83.	4.0	6
169	Response dynamics of metal oxide gas sensors working with temperature profile protocols. Procedia Engineering, 2011, 25, 1173-1176.	1.2	6
170	Fabrication of TiO2 and TiO2 <nb> Nanotubular Arrays and Their Gas Sensing Properties. Procedia Engineering, 2011, 25, 757-760.</nb>	1.2	4
171	Sensing Properties of E-Beam Evaporated Nanostructured Pure and Iron-Doped Tungsten Oxide Thin Films. Sensor Letters, 2011, 9, 759-762.	0.4	4
172	Selective semiconductor gas sensor based on surface photovoltage. , 2002, , .		3
173	New Trends in Optical Resonant Bio-Chemical Sensing. IEEE Sensors Journal, 2021, 21, 12856-12867.	2.4	3
174	Selective and sensitive humidity sensor based on barium chloride dihydrate. Sensors and Actuators B: Chemical, 1993, 14, 615-616.	4.0	2
175	Physical Vapor Deposition of Copper Oxide Nanowires. Procedia Engineering, 2010, 5, 1051-1054.	1.2	2
176	Stable and very sensitive gas sensor based on novel mixed-metal oxides. , 2004, , .		1
177	High Temperature Phases of Nanostructured Tungsten Oxide for Gas Sensing Applications. Materials Research Society Symposia Proceedings, 2006, 915, 1.	0.1	1
178	SnO <inf>2</inf> nanowire bio-transistor for electrical DNA sensing. , 2007, , .		1
179	SnO <inf>2</inf> nanowires for optical and optoelectronic gas sensing. , 2009, , .		1
180	Growth and Gas Sensing Properties of Self-Assembled Chain-Like ZnO Nanostructures. Procedia Engineering, 2012, 47, 762-765.	1.2	1

#	Article	IF	CITATIONS
181	Fabrication of single-nanowire sensing devices by electron beam lithography. , 2015, , .		1
182	THE CATALYTIC EFFECT OF Mo ON THE PROPERTIES OF SnO2-BASED THIN FILM SENSORS. , 2000, , .		1
183	Investigation of Seebeck Effect in Metal Oxide Nanowires for Powering Autonomous Microsystems. Lecture Notes in Electrical Engineering, 2014, , 3-7.	0.3	1
184	On the Route towards Efficient Light Emitting Diodes Based on Porous Silicon. Solid State Phenomena, 1997, 54, 27-36.	0.3	0
185	Helium purity control by thin film gas sensors at the NA-48 experiment at CERN. Sensors and Actuators B: Chemical, 1998, 47, 54-58.	4.0	0
186	Gas sensing applications of novel semiconductor materials. , 0, , .		0
187	Mixed In/Fe oxide thin films for ppb-level ozone sensing. , 0, , .		0
188	Surface photovoltage studies of porous silicon in presence of polluting gases: toward a selective gas sensor. , 2003, 5222, 12.		0
189	Sub-micron structured Metal Oxide gas sensors by means of lithographic techniques. Materials Research Society Symposia Proceedings, 2004, 828, 108.	0.1	0
190	Highly sensitive single crystalline metal oxide nanowires gas sensors. , 2006, , .		0
191	Metal oxide nanowires for biochemical gas sensing. , 2007, , .		0
192	Single crystalline metal oxide nano-wires/tubes: controlled growth for sensitive gas sensor devices. , 2007, , .		0
193	SnO <inf>2</inf> nanowires for detection of chemical warfare agents. , 2009, , .		0
194	The Power of Nanomaterial Approaches in Gas Sensors. Springer Series on Chemical Sensors and Biosensors, 2011, , 53-78.	0.5	0
195	Investigation of Seebeck Effect in ZnO Nanowires for Micropower Generation in Autonomous Sensor Systems. Lecture Notes in Electrical Engineering, 2014, , 245-249.	0.3	0
196	Surface modification, heterojunctions, and other structures: composing metal oxide nanocrystals for chemical sensors. Proceedings of SPIE, 2015, , .	0.8	0