Eduardo H Garin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4359331/publications.pdf Version: 2024-02-01

ΕΠΙΙΑΡΟΟ Η ΟΑΡΙΝ

#	Article	IF	CITATIONS
1	Clinical Significance of Primary Vesicoureteral Reflux and Urinary Antibiotic Prophylaxis After Acute Pyelonephritis: A Multicenter, Randomized, Controlled Study. Pediatrics, 2006, 117, 626-632.	2.1	522
2	Urinary CD80 Excretion Increases in Idiopathic Minimal-Change Disease. Journal of the American Society of Nephrology: JASN, 2009, 20, 260-266.	6.1	165
3	Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney International, 2010, 78, 296-302.	5.2	160
4	T regulatory cell function in idiopathic minimal lesion nephrotic syndrome. Pediatric Nephrology, 2009, 24, 1691-1698.	1.7	121
5	Idiopathic Nephrotic Syndrome and Atopy: Is There a Common Link?. American Journal of Kidney Diseases, 2009, 54, 945-953.	1.9	107
6	Primary vesicoureteral reflux: review of current concepts. Pediatric Nephrology, 1998, 12, 249-256.	1.7	100
7	Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-ÂB-dependent pathway. Nephrology Dialysis Transplantation, 2012, 27, 81-89.	0.7	99
8	Minimal change disease: a "two-hit―podocyte immune disorder?. Pediatric Nephrology, 2011, 26, 645-649.	1.7	90
9	A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome. Pediatric Nephrology, 2006, 21, 603-610.	1.7	85
10	Case series: CTLA4-IgG1 therapy in minimal change disease and focal segmental glomerulosclerosis. Pediatric Nephrology, 2015, 30, 469-477.	1.7	79
11	IL-8 production by peripheral blood mononuclear cells in nephrotic patients. Kidney International, 1994, 45, 1311-1317.	5.2	71
12	Diagnostic significance of clinical and laboratory findings to localize site of urinary infection. Pediatric Nephrology, 2007, 22, 1002-1006.	1.7	59
13	CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance. Pediatric Nephrology, 2014, 29, 1363-1371.	1.7	56
14	Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrology Dialysis Transplantation, 2013, 28, 1439-1446.	0.7	52
15	Minimal Change Disease: A CD80 podocytopathy?. Seminars in Nephrology, 2011, 31, 320-325.	1.6	44
16	Serum from minimal change patients in relapse increases CD80 expression in cultured podocytes. Pediatric Nephrology, 2013, 28, 1803-1812.	1.7	41
17	Circulating mediators of proteinuria in idiopathic minimal lesion nephrotic syndrome. Pediatric Nephrology, 2000, 14, 872-878.	1.7	40
18	Minimal change disease: a dysregulation of the podocyte CD80–CTLA-4 axis?. Pediatric Nephrology, 2014, 29, 2333-2340.	1.7	36

Eduardo H Garin

#	Article	IF	CITATIONS
19	Pathogenesis of proteinuria in idiopathic minimal change disease: molecular mechanisms. Pediatric Nephrology, 2016, 31, 2179-2189.	1.7	35
20	Effect of interleukin-8 on glomerular sulfated compounds and albuminuria. Pediatric Nephrology, 1997, 11, 274-279.	1.7	34
21	Anti-interleukin 8 antibody abolishes effects of lipoid nephrosis cytokine. Pediatric Nephrology, 1998, 12, 381-385.	1.7	26
22	Treatment of systemic hypertension in children and adolescents. Current Opinion in Pediatrics, 2009, 21, 600-604.	2.0	24
23	Primary vesicoureteral reflux; what have we learnt from the recently published randomized, controlled trials?. Pediatric Nephrology, 2019, 34, 1513-1519.	1.7	22
24	Comparison of ambulatory blood pressure and Task Force criteria to identify pediatric hypertension. Pediatric Nephrology, 2007, 22, 554-558.	1.7	20
25	Angiopoietin-like-4 and minimal change disease. PLoS ONE, 2017, 12, e0176198.	2.5	18
26	Effect of lipoid nephrosis cytokine on glomerular sulfated compounds and albuminuria. Pediatric Nephrology, 1995, 9, 587-593.	1.7	15
27	Effect of tumor necrosis factor α and vascular permeability growth factor on albuminuria in rats. Pediatric Nephrology, 2006, 21, 177-181.	1.7	15
28	Renal tubular markers as screening tools for severe vesicoureteral reflux. European Journal of Pediatrics, 2019, 178, 525-531.	2.7	15
29	The RIVUR study: a review of its findings. Pediatric Nephrology, 2015, 30, 703-706.	1.7	14
30	Renal Growth and Scarring in Kidneys with Reflux and a Concentrating Defect. Journal of Urology, 1983, 129, 784-786.	0.4	13
31	Cytokine mRNA Profile in Lipoid Nephrosis: Evidence for Increased IL-8 mRNA Stability. Nephron, 2002, 91, 620-626.	1.8	13
32	Proteinuria and Fusion of Podocyte Foot Processes in Rats after Infusion of Cytokine from Patients with Idiopathic Minimal Lesion Nephrotic Syndrome. Nephron Experimental Nephrology, 2006, 102, e105-e112.	2.2	13
33	Benefit of B7-1 staining and abatacept for treatment-resistant post-transplant focal segmental glomerulosclerosis in a predominantly pediatric cohort: time for a reappraisal. Pediatric Nephrology, 2023, 38, 145-159.	1.7	12
34	Effect of Supernatants from Nephrotic Peripheral Blood Mononuclear Cells on 35Sulfate Incorporation in Rat Glomerular Basement Membrane. Pediatric Research, 1985, 19, 836-840.	2.3	11
35	Use of C4d as a diagnostic tool to classify membranoproliferative glomerulonephritis. Nefrologia, 2017, 37, 78-86.	0.4	11
36	Minimal change disease in graft versus host disease: a podocyte response to the graft?. Clinical Nephrology, 2013, 80, 469-473.	0.7	10

EDUARDO H GARIN

#	Article	IF	CITATIONS
37	Rituximab in idiopathic nephrotic syndrome: does it make sense?. Pediatric Nephrology, 2014, 29, 1313-1319.	1.7	9
38	BK viruria and viremia in children with systemic lupus erythematosus. Pediatric Rheumatology, 2017, 15, 21.	2.1	9
39	CD80, suPAR and nephrotic syndrome in a case of NPHS2 mutation. Nefrologia, 2013, 33, 727-31.	0.4	9
40	Does hydronephrosis predict the presence of severe vesicoureteral reflux?. European Journal of Pediatrics, 2012, 171, 1605-1610.	2.7	7
41	CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance: Response. Pediatric Nephrology, 2014, 29, 1467-1468.	1.7	6
42	Urinary CD80: a biomarker for a favorable response to corticosteroids in minimal change disease. Pediatric Nephrology, 2018, 33, 1101-1103.	1.7	6
43	Glomerular and Tubular Function in Children with Ileal Conduit Urinary Diversion. Journal of Urology, 1977, 117, 505-507.	0.4	4
44	What is the purpose of launching the <i>World Journal of Clinical Pediatrics</i> ?. World Journal of Clinical Pediatrics, 2012, 1, 1.	2.1	0
45	Cytokines as Active Factors in Minimal Change Nephrotic Syndrome. , 2016, , 105-140.		0
46	Minimal Change Disease. , 2016, , 85-116.		0

Minimal Change Disease. , 2016, , 85-116. 46