Núria Butchosa RObles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4359173/publications.pdf

Version: 2024-02-01

8 papers 919 citations

8 h-index 1588992 8 g-index

9 all docs 9 docs citations

times ranked

9

1545 citing authors

#	Article	IF	CITATIONS
1	Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter, 2013, 9, 2047.	2.7	294
2	A Transparent, Hazy, and Strong Macroscopic Ribbon of Oriented Cellulose Nanofibrils Bearing Poly(ethylene glycol). Advanced Materials, 2015, 27, 2070-2076.	21.0	185
3	Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chemistry, 2013, 15, 3404.	9.0	129
4	Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose. Cellulose, 2014, 21, 4349-4358.	4.9	109
5	Nanostructured membranes based on native chitin nanofibers prepared by mild process. Carbohydrate Polymers, 2014, 112, 255-263.	10.2	84
6	Synthesis of Multifunctional Cellulose Nanocrystals for Lectin Recognition and Bacterial Imaging. Biomacromolecules, 2015, 16, 1426-1432.	5.4	64
7	Glycan-Functionalized Fluorescent Chitin Nanocrystals for Biorecognition Applications. Bioconjugate Chemistry, 2014, 25, 640-643.	3.6	41
8	Stronger cellulose microfibril network structure through the expression of cellulose-binding modules in plant primary cell walls. Cellulose, 2019, 26, 3083-3094.	4.9	11