
## Lawrence T Reiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4359020/publications.pdf Version: 2024-02-01



I ANDENCE T REITER

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Molecular Changes in Prader-Willi Syndrome Neurons Reveals Clues About Increased Autism<br>Susceptibility. Frontiers in Molecular Neuroscience, 2021, 14, 747855.                            | 2.9 | 8         |
| 2  | Behavioral characterization of dup15q syndrome: Toward meaningful endpoints for clinical trials.<br>American Journal of Medical Genetics, Part A, 2020, 182, 71-84.                          | 1.2 | 21        |
| 3  | Properties of beta oscillations in Dup15q syndrome. Journal of Neurodevelopmental Disorders, 2020, 12, 22.                                                                                   | 3.1 | 7         |
| 4  | Developmental disabilities, autism, and schizophrenia at a single locus. , 2020, , 201-221.                                                                                                  |     | 1         |
| 5  | Transcriptomic and proteomic profiling of glial versus neuronal Dube3a overexpression reveals common molecular changes in gliopathic epilepsies. Neurobiology of Disease, 2020, 141, 104879. | 4.4 | 3         |
| 6  | An Unbiased Drug Screen for Seizure Suppressors in Duplication 15q Syndrome Reveals 5-HT1A and Dopamine Pathway Activation as Potential Therapies. Biological Psychiatry, 2020, 88, 698-709. | 1.3 | 7         |
| 7  | Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production. JCI Insight, 2020, 5, .                                                            | 5.0 | 40        |
| 8  | The Drosophila Gene Sulfateless Modulates Autism-Like Behaviors. Frontiers in Genetics, 2019, 10, 574.                                                                                       | 2.3 | 11        |
| 9  | Mechanisms underlying the EEG biomarker in Dup15q syndrome. Molecular Autism, 2019, 10, 29.                                                                                                  | 4.9 | 31        |
| 10 | A genome-wide enhancer/suppressor screen for Dube3a interacting genes in Drosophila melanogaster.<br>Scientific Reports, 2019, 9, 2382.                                                      | 3.3 | 1         |
| 11 | Understanding Human Genetic Disease With the Fly. , 2019, , 69-87.                                                                                                                           |     | 1         |
| 12 | Significant transcriptional changes in 15q duplication but not Angelman syndrome deletion stem cell-derived neurons. Molecular Autism, 2018, 9, 6.                                           | 4.9 | 19        |
| 13 | A recurrent de novo missense mutation in UBTF causes developmental neuroregression. Human<br>Molecular Genetics, 2018, 27, 691-705.                                                          | 2.9 | 32        |
| 14 | Culturing and Neuronal Differentiation of Human Dental Pulp Stem Cells. Current Protocols in<br>Human Genetics, 2017, 92, 21.6.1-21.6.10.                                                    | 3.5 | 24        |
| 15 | Etiology of Human Genetic Disease on the Fly. Trends in Genetics, 2017, 33, 391-398.                                                                                                         | 6.7 | 45        |
| 16 | Dental pulp stem cells for the study of neurogenetic disorders. Human Molecular Genetics, 2017, 26,<br>R166-R171.                                                                            | 2.9 | 35        |
| 17 | Dental Pulp Stem Cells Model Early Life and Imprinted DNA Methylation Patterns. Stem Cells, 2017, 35, 981-988.                                                                               | 3.2 | 28        |
| 18 | Glial overexpression of Dube3a causes seizures and synaptic impairments in Drosophila concomitant with down regulation of the Na+/K+ pump ATPα. Neurobiology of Disease, 2017, 108, 238-248. | 4.4 | 26        |

LAWRENCE T REITER

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome. Human Molecular Genetics, 2017, 26, 3995-4010. | 2.9 | 59        |
| 20 | Multisite Semiautomated Clinical Data Repository for Duplication 15q Syndrome: Study Protocol and<br>Early Uses. JMIR Research Protocols, 2017, 6, e194.                                              | 1.0 | 4         |
| 21 | A Rare Inherited 15q11.2-q13.1 Interstitial Duplication with Maternal Somatic Mosaicism, Renal<br>Carcinoma, and Autism. Frontiers in Genetics, 2016, 7, 205.                                         | 2.3 | 4         |
| 22 | A Quantitative Electrophysiological Biomarker of Duplication 15q11.2-q13.1 Syndrome. PLoS ONE, 2016, 11, e0167179.                                                                                    | 2.5 | 54        |
| 23 | The <i>Drosophila melanogaster</i> homolog of <i>UBE3A</i> is not imprinted in neurons.<br>Epigenetics, 2016, 11, 637-642.                                                                            | 2.7 | 6         |
| 24 | Identification of a distinct developmental and behavioral profile in children with Dup15q syndrome.<br>Journal of Neurodevelopmental Disorders, 2016, 8, 19.                                          | 3.1 | 47        |
| 25 | Effects of hTERT immortalization on osteogenic and adipogenic differentiation of dental pulp stem cells. Data in Brief, 2016, 6, 696-699.                                                             | 1.0 | 15        |
| 26 | The role of TORC1 in muscle development in Drosophila. Scientific Reports, 2015, 5, 9676.                                                                                                             | 3.3 | 20        |
| 27 | Assessment of the Tumorigenic Potential of Spontaneously Immortalized and<br><i>hTERT</i> -Immortalized Cultured Dental Pulp Stem Cells. Stem Cells Translational Medicine, 2015, 4,<br>905-912.      | 3.3 | 33        |
| 28 | Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders. Stem Cell Research, 2015, 15, 722-730.                                                  | 0.7 | 35        |
| 29 | Drosophila. , 2015, , 77-96.                                                                                                                                                                          |     | Ο         |
| 30 | Variation in Dube3a expression affects neurotransmission at the <i>Drosophila</i> neuromuscular junction. Biology Open, 2015, 4, 776-782.                                                             | 1.2 | 18        |
| 31 | Epigenetic regulation of <i>UBE3A</i> and roles in human neurodevelopmental disorders.<br>Epigenomics, 2015, 7, 1213-1228.                                                                            | 2.1 | 100       |
| 32 | A survey of seizures and current treatments in 15q duplication syndrome. Epilepsia, 2014, 55, 396-402.                                                                                                | 5.1 | 80        |
| 33 | Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1. Molecular Autism, 2014, 5, 44.                               | 4.9 | 83        |
| 34 | Developmental Disabilities, Autism, and Schizophrenia at a Single Locus. , 2013, , 617-630.                                                                                                           |     | 1         |
| 35 | The Interstitial Duplication 15q11.2â€q13 Syndrome Includes Autism, Mild Facial Anomalies and a<br>Characteristic EEG Signature. Autism Research, 2013, 6, 268-279.                                   | 3.8 | 130       |
| 36 | Proteomic Profiling in Drosophila Reveals Potential Dube3a Regulation of the Actin Cytoskeleton and<br>Neuronal Homeostasis. PLoS ONE, 2013, 8, e61952.                                               | 2.5 | 36        |

LAWRENCE T REITER

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Altered Serotonin, Dopamine and Norepinepherine Levels in 15q Duplication and Angelman Syndrome<br>Mouse Models. PLoS ONE, 2012, 7, e43030.                                                                      | 2.5  | 37        |
| 38 | Drosophila Ube3a regulates monoamine synthesis by increasing GTP cyclohydrolase I activity via a non-ubiquitin ligase mechanism. Neurobiology of Disease, 2011, 41, 669-677.                                     | 4.4  | 37        |
| 39 | Increased copy number for methylated maternal 15q duplications leads to changes in gene and protein expression in human cortical samples. Molecular Autism, 2011, 2, 19.                                         | 4.9  | 64        |
| 40 | Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila. Protein and Cell, 2011, 2, 554-563.                                                         | 11.0 | 3         |
| 41 | Normal social seeking behavior, hypoactivity and reduced exploratory range in a mouse model of Angelman syndrome. BMC Genetics, 2011, 12, 7.                                                                     | 2.7  | 35        |
| 42 | Comprehensive motor testing in Fmr1-KO mice exposes temporal defects in oromotor coordination<br>Behavioral Neuroscience, 2011, 125, 962-969.                                                                    | 1.2  | 16        |
| 43 | Dose-dependent modulation of HIF-1α/sima controls the rate of cell migration and invasion in Drosophila ovary border cells. Oncogene, 2010, 29, 1123-1134.                                                       | 5.9  | 17        |
| 44 | A Single-Tube Quantitative High-Resolution Melting Curve Method for Parent-of-Origin Determination of 15q Duplications. Genetic Testing and Molecular Biomarkers, 2010, 14, 571-576.                             | 0.7  | 12        |
| 45 | Drosophila Orthologues to Human Disease Genes: An Update on Progress. Progress in Molecular<br>Biology and Translational Science, 2008, 82, 1-32.                                                                | 1.9  | 14        |
| 46 | Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors.<br>Human Molecular Genetics, 2008, 17, 2181-2189.                                                             | 2.9  | 123       |
| 47 | Accentuate the Negative:Proteome Comparisons Using the Negative Proteome Database. Fly, 2007, 1, 164-171.                                                                                                        | 1.7  | 2         |
| 48 | Expression of the Rho-GEF Pbl/ECT2 is regulated by the UBE3A E3 ubiquitin ligase. Human Molecular<br>Genetics, 2006, 15, 2825-2835.                                                                              | 2.9  | 95        |
| 49 | Homophila: human disease gene cognates in Drosophila. Nucleic Acids Research, 2002, 30, 149-151.                                                                                                                 | 14.5 | 158       |
| 50 | Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins. Expert Opinion on Therapeutic Targets, 2002, 6, 387-399.                                                | 3.4  | 36        |
| 51 | A Systematic Analysis of Human Disease-Associated Gene Sequences In <i>Drosophila melanogaster</i> .<br>Genome Research, 2001, 11, 1114-1125.                                                                    | 5.5  | 751       |
| 52 | Regional localization of 10 mariner transposon-like ESTs by means of FISH—evidence for a correlation<br>with fragile sites. Mammalian Genome, 2001, 12, 326-328.                                                 | 2.2  | 3         |
| 53 | The 1.4-Mb CMT1A Duplication/HNPP Deletion Genomic Region Reveals Unique Genome Architectural<br>Features and Provides Insights into the Recent Evolution of New Genes. Genome Research, 2001, 11,<br>1018-1033. | 5.5  | 129       |
| 54 | Localization of mariner DNA Transposons in the Human Genome by PRINS. Genome Research, 1999, 9,<br>839-843.                                                                                                      | 5.5  | 29        |

LAWRENCE T REITER

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Molecular Mechanisms for CMT1A Duplication and HNPP Deletion. Annals of the New York Academy of Sciences, 1999, 883, 22-35.                                                                          | 3.8  | 35        |
| 56 | Human Meiotic Recombination Products Revealed by Sequencing a Hotspot for Homologous Strand<br>Exchange in Multiple HNPP Deletion Patients. American Journal of Human Genetics, 1998, 62, 1023-1033. | 6.2  | 168       |
| 57 | Detection of the CMT1A/HNPP recombination hotspot in unrelated patients of European descent<br>Journal of Medical Genetics, 1997, 34, 43-49.                                                         | 3.2  | 52        |
| 58 | The human COX10 gene is disrupted during homologous recombination between the 24 kb proximal and distal CMT1A-REPs. Human Molecular Genetics, 1997, 6, 1595-1603.                                    | 2.9  | 81        |
| 59 | Genomic Structure and Expression of the Human Heme A:Farnesyltransferase (COX10) Gene. Genomics, 1997, 42, 161-164.                                                                                  | 2.9  | 27        |
| 60 | DNA rearrangements affecting dosage sensitive genes. Mental Retardation and Developmental Disabilities Research Reviews, 1996, 2, 139-146.                                                           | 3.6  | 3         |
| 61 | A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nature Genetics, 1996, 12, 288-297.                                 | 21.4 | 304       |
| 62 | Charcot-Marie-Tooth Disease and Related Inherited Neuropathies. Medicine (United States), 1996, 75, 233-250.                                                                                         | 1.0  | 74        |