Xubao Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4358888/publications.pdf

Version: 2024-02-01

430874 552781 31 722 18 26 h-index citations g-index papers 31 31 31 578 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immobilization of cobalt oxide nanoparticles on porous nitrogen-doped carbon as electrocatalyst for oxygen evolution. Chinese Journal of Chemical Engineering, 2022, 52, 10-18.	3.5	1
2	Preparation of uniform polyurea microspheres at high yield by precipitation polymerization and their use for laccase immobilization. Polymer, 2021, 216, 123432.	3.8	13
3	Fluorescence Behavior and Mechanisms of Poly(ethylene glycol) and Their Applications in Fe ³⁺ and Cr ⁶⁺ Detections, Data Encryption, and Cell Imaging. ACS Sustainable Chemistry and Engineering, 2021, 9, 5166-5178.	6.7	41
4	Porous Polyurea Supported Pd Catalyst: Easy Preparation, Full Characterization, and High Activity and Reusability in Reduction of Hexavalent Chromium in Aqueous System. Industrial & Engineering Chemistry Research, 2021, 60, 8108-8119.	3.7	16
5	Fabrication of solid and hollow colloidosomes through self-assembly of micronsized polymer particles and their controlled transition. Polymer, 2021, 228, 123946.	3.8	O
6	Synthesis of postâ€modified poly(esterâ€amino) microspheres via azaâ€Michael precipitation polymerization and its use for enzyme immobilization. Polymers for Advanced Technologies, 2021, 32, 1802-1812.	3.2	1
7	Effective enhancement of Cu ions adsorption on porous polyurea adsorbent by carboxylic modification of its terminal amine groups. Reactive and Functional Polymers, 2020, 147, 104450.	4.1	23
8	Fluorescent linear polyurea based on toluene diisocyanate: Easy preparation, broad emission and potential applications. Chemical Engineering Journal, 2020, 399, 125867.	12.7	36
9	Aliphatic amide salt, a new type of luminogen: Characterization, emission and biological applications. Chemical Engineering Journal, 2020, 388, 124182.	12.7	25
10	Preparation of Highly Uniform Polyurethane Microspheres by Precipitation Polymerization and Pd Immobilization on Their Surface and Their Catalytic Activity in 4-Nitrophenol Reduction and Dye Degradation. Industrial & Degradation. Industrial & Degradation. Industrial & Degradation. Industrial & Degradation.	3.7	22
11	Porous polyurea microspheres with Pd immobilized on surface and their catalytic activity in 4-nitrophenol reduction and organic dyes degradation. European Polymer Journal, 2020, 129, 109652.	5.4	49
12	Easy preparation of superoleophobic membranes based on cellulose filter paper and their use for water–oil separation. Cellulose, 2019, 26, 6813-6823.	4.9	15
13	Highly Uniform and Porous Polyurea Microspheres: Clean and Easy Preparation by Interface Polymerization, Palladium Incorporation, and High Catalytic Performance for Dye Degradation. Frontiers in Chemistry, 2019, 7, 314.	3.6	25
14	Catalysis of isocyanate reaction with water by DMF and its use for fast preparation of uniform polyurea microspheres through precipitation polymerization. European Polymer Journal, 2019, 115, 384-390.	5.4	19
15	Pickering Emulsion Formation of Paraffin Wax in an Ethanol–Water Mixture Stabilized by Primary Polymer Particles and Wax Microspheres Thereof. Langmuir, 2018, 34, 2282-2289.	3.5	10
16	Easy preparation of porous polyurea through copolymerization of toluene diisocyanate with ethylenediamine and its use as absorbent for copper ions. Reactive and Functional Polymers, 2018, 133, 143-152.	4.1	20
17	Formation and shape transition of porous polyurea of exotic forms through interfacial polymerization of toluene diisocyanate in aqueous solution of ethylenediamine and their characterization. European Polymer Journal, 2018, 109, 93-100.	5.4	20
18	Polyurea Structure Characterization by HR-MAS NMR Spectroscopy. Industrial & Engineering Chemistry Research, 2017, 56, 2993-2998.	3.7	13

#	Article	IF	CITATIONS
19	High yield preparation of uniform polyurea microspheres through precipitation polymerization and their application as laccase immobilization support. Chemical Engineering Journal, 2017, 328, 1043-1050.	12.7	42
20	Preparation of Highly Uniform Polyurea Microspheres through Precipitation Polymerization and Their Characterization. Industrial & Engineering Chemistry Research, 2016, 55, 11528-11535.	3.7	19
21	Preparation of uniform and porous polyurea microspheres of large size through interfacial polymerization of toluene diisocyanate in water solution of ethylene diamine. Chemical Engineering Journal, 2016, 303, 48-55.	12.7	30
22	A facile pathway to polyurea nanofiber fabrication and polymer morphology control in copolymerization of oxydianiline and toluene diisocyanate in acetone. RSC Advances, 2015, 5, 7426-7432.	3.6	10
23	Preparation of highly uniform and crosslinked polyurea microspheres through precipitation copolymerization and their property and structure characterization. RSC Advances, 2014, 4, 32134-32141.	3.6	26
24	One step preparation of porous polyurea by reaction of toluene diisocyanate with water and its characterization. RSC Advances, 2014, 4, 33520-33529.	3.6	57
25	Styrene-butyl acrylate copolymers latexes prepared with different functional monomers and their application as anti-icing coatings. Journal of Polymer Research, 2014, 21, 1.	2.4	11
26	Preparation of core–shell and hollow polyurea microspheres via precipitation polymerization using polyamine as crosslinker monomer. Polymer Chemistry, 2013, 4, 5776.	3.9	33
27	A facile route to preparation of uniform polymer microspheres by quiescent polymerization with reactor standing still without any stirring. Chemical Engineering Journal, 2012, 213, 214-217.	12.7	34
28	A novel protocol for the preparation of uniform polymer microspheres with high yields through step polymerization of isophorone diisocyanate. Journal of Polymer Science Part A, 2011, 49, 4492-4497.	2.3	28
29	Calculation of Grafting and Property Characterization in Polyurethaneâ€Acrylic Hybrid Materials Prepared by Emulsion Process. Macromolecular Chemistry and Physics, 2010, 211, 2201-2210.	2.2	6
30	Preparation and full characterization of cationic latex of styrene–butyl acrylate. Polymer, 2009, 50, 4220-4227.	3.8	46
31	Influence of ingredients in water-based polyurethane–acrylic hybrid latexes on latex properties. Progress in Organic Coatings, 2008, 62, 251-257.	3.9	31