

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4358551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interconnected nanoparticle-stacked platinum-based nanosheets as active cathode electrocatalysts for passive direct methanol fuel cells. Journal of Electroanalytical Chemistry, 2018, 828, 50-58.	3.8	8
2	High performance MWCNT–Pt nanocomposite-based cathode for passive direct methanol fuel cells. RSC Advances, 2017, 7, 12329-12335.	3.6	12
3	An ordered structured cathode based on vertically aligned Pt nanotubes for ultra-low Pt loading passive direct methanol fuel cells. Electrochimica Acta, 2017, 252, 541-548.	5.2	24
4	A green, cheap, high-performance carbonaceous catalyst derived from Chlorella pyrenoidosa for oxygen reduction reaction in microbial fuel cells. International Journal of Hydrogen Energy, 2017, 42, 27657-27665.	7.1	45
5	Controllable fabrication of ordered Pt nanorod array as catalytic electrode for passive direct methanol fuel cells. Chinese Journal of Catalysis, 2016, 37, 1089-1095.	14.0	11
6	Shape-controlled porous heterogeneous PtRu/C/Nafion microspheres enabling high performance direct methanol fuel cells. Journal of Materials Chemistry A, 2015, 3, 15177-15183.	10.3	19
7	Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Research, 2015, 8, 2777-2788.	10.4	124
8	Fabrication of nano-network structure anode by zinc oxide nanorods template for passive direct methanol fuel cells. International Journal of Hydrogen Energy, 2015, 40, 6647-6654.	7.1	16
9	Rapid, simple and low cost fabrication of a microfluidic direct methanol fuel cell based on polydimethylsiloxane. Microsystem Technologies, 2014, 20, 493-498.	2.0	9
10	Controllable Modification of the Electronic Structure of Carbon-Supported Core–Shell Cu@Pd Catalysts for Formic Acid Oxidation. Journal of Physical Chemistry C, 2014, 118, 12669-12675.	3.1	57
11	Structural transformation of carbon-supported Pt ₃ Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst. Nanoscale, 2014, 6, 10686-10692.	5.6	56
12	An efficient reduction route for the production of Pd–Pt nanoparticles anchored on graphene nanosheets for use as durable oxygen reduction electrocatalysts. Carbon, 2012, 50, 265-274.	10.3	169
13	Synthesis of hollow ellipsoidal silica nanostructures using a wet-chemical etching approach. Journal of Colloid and Interface Science, 2012, 375, 106-111.	9.4	36
14	Direct Electrochemistry and Bioelectrocatalysis of Microperoxidaseâ€11 Immobilized on Chitosanâ€Graphene Nanocomposite. Electroanalysis, 2010, 22, 1323-1328.	2.9	52
15	Signalâ€On Electrochemiluminescence Biosensors Based on CdS–Carbon Nanotube Nanocomposite for the Sensitive Detection of Choline and Acetylcholine. Advanced Functional Materials, 2009, 19, 1444-1450.	14.9	177
16	Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes. Talanta, 2008, 76, 419-423.	5.5	88