
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4358448/publications.pdf Version: 2024-02-01

VEDA V RUTOVA

#	Article	IF	CITATIONS
1	Thermal pyrolysis and kinetic analysis of a ZnxCo1â^'x ZiF-8 metal–organic framework for recent applications. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 831.	1.9	0
2	Rational Functionalization of UiO-66 with Pd Nanoparticles: Synthesis and In Situ Fourier-Transform Infrared Monitoring. Inorganic Chemistry, 2022, 61, 3875-3885.	1.9	8
3	Cobalt nanoparticles embedded in porous N-doped carbon support as a superior catalyst for the p-nitrophenol reduction. Applied Surface Science, 2022, 592, 153292.	3.1	17
4	Improvement of the EC Performance in LCP-MOF Electrode Materials by Succinic Anhydrate Addition to the Electrolyte. Sustainability, 2022, 14, 323.	1.6	0
5	Laboratory X-ray Microscopy Study of Microcrack Evolution in a Novel Sodium Iron Titanate-Based Cathode Material for Li-Ion Batteries. Crystals, 2022, 12, 3.	1.0	3
6	Facile synthesis of ZnNC derived from a ZIF-8 metal-organic framework by the microwave-assisted solvothermal technique as an anode material for lithium-ion batteries. New Journal of Chemistry, 2022, 46, 9138-9145.	1.4	6
7	Iron (II) fluoride cathode material derived from MIL-88A. Journal of Alloys and Compounds, 2022, 916, 165438.	2.8	10
8	Doxorubicin-Loaded Core–Shell UiO-66@SiO2 Metal–Organic Frameworks for Targeted Cellular Uptake and Cancer Treatment. Pharmaceutics, 2022, 14, 1325.	2.0	26
9	New fast synthesis of MOF-801 for water and hydrogen storage: Modulator effect and recycling options. Inorganica Chimica Acta, 2021, 514, 120025.	1.2	33
10	Laboratory Operando XAS Study of Sodium Iron Titanite Cathode in the Li-Ion Half-Cell. Nanomaterials, 2021, 11, 156.	1.9	7
11	Self-Driving Laboratories for Development of New Functional Materials and Optimizing Known Reactions. Nanomaterials, 2021, 11, 619.	1.9	28
12	Microbial-based magnetic nanoparticles production: a mini-review. Integrative Biology (United) Tj ETQqO 0 0 rgB1	- /Qverlock	10 Tf 50 30
13	Loading of the Model Amino Acid Leucine in UiO-66 and UiO-66-NH ₂ : Optimization of Metal–Organic Framework Carriers and Evaluation of Host–Guest Interactions. Inorganic Chemistry, 2021, 60, 5694-5703.	1.9	18
14	The joint effect of naphthalene-system and defects on dye removal by UiO-66 derivatives. Microporous and Mesoporous Materials, 2021, 325, 111314.	2.2	16
15	Synthesis of the Metal-Organic Framework UiO-66 in the Form of Nanoparticles with a Modified Surface. Journal of Surface Investigation, 2021, 15, 920-926.	0.1	0
16	The Rare-Earth Elements Doping of BaGdF5 Nanophosphors for X-ray Photodynamic Therapy. Nanomaterials, 2021, 11, 3212.	1.9	8
17	Photoswitchable Zirconium MOF for Light-Driven Hydrogen Storage. Polymers, 2021, 13, 4052.	2.0	14

¹⁸BaGdF5 Nanophosphors Doped with Different Concentrations of Eu3+ for Application in X-ray
Photodynamic Therapy. International Journal of Molecular Sciences, 2021, 22, 13040.1.86

#	Article	IF	CITATIONS
19	XAFS investigation of Co/Zn based ZIFs after I2, Cl2 and Br2 adsorption. Radiation Physics and Chemistry, 2020, 175, 108152.	1.4	8
20	MW synthesis of ZIF-65 with a hierarchical porous structure. Microporous and Mesoporous Materials, 2020, 293, 109685.	2.2	15
21	Preferences of the end members of the lanthanide series for A and B sites in BiFeO3. Ceramics International, 2020, 46, 6333-6341.	2.3	12
22	New orthorhombic sodium iron(+2) titanate. Ceramics International, 2020, 46, 4416-4422.	2.3	6
23	One-pot coating of LiCoPO ₄ /C by a UiO-66 metal–organic framework. RSC Advances, 2020, 10, 35206-35213.	1.7	12
24	Synthesis of ZnO Nanoparticles Doped with Cobalt Using Bimetallic ZIFs as Sacrificial Agents. Nanomaterials, 2020, 10, 1275.	1.9	7
25	Immobilization of UiO-67 with photochromic spiropyrans: a quantum chemical study. Journal of Molecular Modeling, 2020, 26, 212.	0.8	2
26	Synthesis of Zinc Oxide Nanoparticles Coated with Silicon Oxide. Doklady Chemistry, 2020, 492, 69-72.	0.2	1
27	Development of the Technology for Processing Plant Breeding By-Products to Obtain Biosorbent. E3S Web of Conferences, 2020, 169, 02011.	0.2	0
28	The Effect of Hydrothermal Synthesis Parameters on the Formation of Sodium Bismuth Titanate. Comments on Inorganic Chemistry, 2020, 40, 314-326.	3.0	5
29	Pd nanoparticle growth monitored by DRIFT spectroscopy of adsorbed CO. Analyst, The, 2020, 145, 7534-7540.	1.7	17
30	MW Synthesis of ZIF-7. The Effect of Solvent on Particle Size and Hydrogen Sorption Properties. Energies, 2020, 13, 6306.	1.6	12
31	Formation of Local Defects and Mesopores in a Structure of UiO-66-NDC Metal-Organic Framework. Journal of Surface Investigation, 2020, 14, 318-323.	0.1	4
32	In Situ Time-Resolved Decomposition of β-Hydride Phase in Palladium Nanoparticles Coated with Metal-Organic Framework. Metals, 2020, 10, 810.	1.0	1
33	Microwave synthesis and phase transition in UiO-66/MIL-140A system. Microporous and Mesoporous Materials, 2020, 296, 109998.	2.2	20
34	The effect of heterovalent doping on the stability and properties of multiferroic Aurivillius phases. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	2
35	Modification of ZIF-8 with triethylamine molecules for enhanced iodine and bromine adsorption. Inorganica Chimica Acta, 2020, 509, 119678.	1.2	17
36	UiO-66 type MOFs with mixed-linkers - 1,4-Benzenedicarboxylate and 1,4-naphthalenedicarboxylate: Effect of the modulator and post-synthetic exchange. Microporous and Mesoporous Materials, 2020, 305, 110324.	2.2	33

#	Article	IF	CITATIONS
37	á¶«-Leucine Loading and Release in MIL-100 Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 9758.	1.8	9
38	On the Possibility of Synthesizing Bimno ₃ at Ambient Pressure Using Low-Temperature Methods. Comments on Inorganic Chemistry, 2019, 39, 270-286.	3.0	3
39	Zirconium-Based Metal-Organic UiO-66, UiO-66-NDC and MOF-801 Frameworks. Influence of the Linker Effect on the Hydrogen Sorption Efficiency. Journal of Surface Investigation, 2019, 13, 787-792.	0.1	13
40	Ultra-Small Pd Nanoparticles on Ceria as an Advanced Catalyst for CO Oxidation. Catalysts, 2019, 9, 385.	1.6	19
41	The effect of cobalt content in Zn/Co-ZIF-8 on iodine capping properties. Inorganica Chimica Acta, 2019, 492, 18-22.	1.2	25
42	Partial and Complete Substitution of the 1,4-Benzenedicarboxylate Linker in UiO-66 with 1,4-Naphthalenedicarboxylate: Synthesis, Characterization, and H ₂ -Adsorption Properties. Inorganic Chemistry, 2019, 58, 1607-1620.	1.9	42
43	Water as a structure-driving agent between the UiO-66 and MIL-140A metal–organic frameworks. Chemical Communications, 2019, 55, 901-904.	2.2	38
44	Microwave Assisted Synthesis and Oxidation Resistance of Sm3+ Doped Fe3O4 Nanoparticles. Nanotechnologies in Russia, 2018, 13, 109-115.	0.7	1
45	A room-temperature growth of gold nanoparticles on MOF-199 and its transformation into the [Cu2(OH)(BTC)(H2O)] phase. Polyhedron, 2018, 154, 357-363.	1.0	13
46	Characterization of local atomic structure in Co/Zn based ZIFs by XAFS. Journal of Physics: Conference Series, 2018, 987, 012031.	0.3	3
47	Zn/Co ZIF family: MW synthesis, characterization and stability upon halogen sorption. Polyhedron, 2018, 154, 457-464.	1.0	44
48	Local atomic and electronic structure of quantum dots based on Mn- and Co-doped ZnS. Journal of Structural Chemistry, 2017, 58, 45-52.	0.3	3
49	Modulator Effect in UiO-66-NDC (1,4-Naphthalenedicarboxylic Acid) Synthesis and Comparison with UiO-67-NDC Isoreticular Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 5422-5431.	1.4	55
50	Rapid microwave synthesis of CdS quantum dots stabilized with 4,4 ' -bipyridine and dioctyl sodium sulfosuccinate. Mendeleev Communications, 2017, 27, 313-314.	0.6	4
51	Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA. Solid State Sciences, 2017, 69, 13-21.	1.5	68
52	Analysis of the local atomic structure of quantum dots of the CdS family. Journal of Structural Chemistry, 2016, 57, 1422-1428.	0.3	3
53	Synthesis and structure modeling of ZnS based quantum dots. Journal of Structural Chemistry, 2016, 57, 926-933.	0.3	3
54	Structure and magnetic properties of pure and samarium doped magnetite nanoparticles. Journal of Structural Chemistry, 2016, 57, 1459-1468.	0.3	14

#	Article	IF	CITATIONS
55	lon exchange conversion of solid electrolyte, potassium sodiostannate, into isomorphous metastable sodium stannate. Mendeleev Communications, 2016, 26, 246-247.	0.6	3
56	Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 2016, 85, 280-307.	2.5	300
57	New microwave-assisted synthesis of ZIF-8. Mendeleev Communications, 2016, 26, 43-44.	0.6	33
58	Correlation between Theoretical and Experimental Specific Surface Area Estimation for PANI and PANI (Zr) Composite. Modern Applied Science, 2015, 9, 133.	0.4	3
59	Atomic and electronic structure of CdS-based quantum dots. Journal of Structural Chemistry, 2015, 56, 517-522.	0.3	8
60	Synthesis and structure of a new layered potassium sodiostannate. Mendeleev Communications, 2015, 25, 302-303.	0.6	2
61	New P2 Compound with Brucite-Like Layers: Potassium Lithiostannate. Inorganic Chemistry, 2012, 51, 4931-4937	1.9	8