Manuela D'Amen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/435758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ORMEF: a Mediterranean database of exotic fish records. Scientific Data, 2022, 9, .	5.3	9
2	The spread of Lessepsian fish does not track native temperature conditions. ICES Journal of Marine Science, 2022, 79, 1864-1873.	2.5	3
3	Integrating univariate niche dynamics in species distribution models: A step forward for marine research on biological invasions. Journal of Biogeography, 2020, 47, 686-697.	3.0	17
4	Lessepsian fish invasion in Mediterranean marine protected areas: a risk assessment under climate change scenarios. ICES Journal of Marine Science, 2020, 77, 388-397.	2.5	37
5	Scaling the linkage between environmental niches and functional traits for improved spatial predictions of biological communities. Global Ecology and Biogeography, 2019, 28, 1384-1392.	5.8	8
6	Climate and land-use changes reshuffle politically-weighted priority areas of mountain biodiversity. Global Ecology and Conservation, 2019, 17, e00589.	2.1	16
7	Improving spatial predictions of taxonomic, functional and phylogenetic diversity. Journal of Ecology, 2018, 106, 76-86.	4.0	21
8	Wildfire–vegetation dynamics affect predictions of climate change impact on bird communities. Ecography, 2018, 41, 982-995.	4.5	14
9	Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species coâ€occurrence. Ecography, 2018, 41, 1233-1244.	4.5	146
10	Using macroecological constraints on spatial biodiversity predictions under climate change: the modelling method matters. Ecological Modelling, 2018, 390, 79-87.	2.5	13
11	Towards functional biodiversity predictions: a hierarchical modelling framework from primary productivity to biomass of upper trophic levels. Landscape Ecology, 2018, 33, 2221-2237.	4.2	5
12	Tradeâ€offs and synergies between bird conservation and wildfire suppression in the face of global change. Journal of Applied Ecology, 2018, 55, 2181-2192.	4.0	17
13	How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods in Ecology and Evolution, 2018, 9, 2155-2166.	5.2	27
14	Spatial predictions at the community level: from current approaches to future frameworks. Biological Reviews, 2017, 92, 169-187.	10.4	153
15	ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 2017, 40, 774-787.	4.5	703
16	Species Assemblages, Macroecology, and Global Change \hat{a}^{*} †. , 2017, , .		0
17	Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios. Diversity and Distributions, 2016, 22, 83-96.	4.1	45
18	A multi-scale looping approach to predict spatially dynamic patterns of functional species richness in changing landscapes. Ecological Indicators, 2016, 64, 92-104.	6.3	15

Manuela D'Amen

#	Article	IF	CITATIONS
19	Predicting richness and composition in mountain insect communities at high resolution: a new test of the <scp>SESAM</scp> framework. Global Ecology and Biogeography, 2015, 24, 1443-1453.	5.8	60
20	Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models. Journal of Biogeography, 2015, 42, 1255-1266.	3.0	97
21	Fire management, climate change and their interacting effects on birds in complex Mediterranean landscapes: dynamic distribution modelling of an early-successional species—the near-threatened Dartford Warbler (Sylvia undata). Journal of Ornithology, 2015, 156, 275-286.	1.1	24
22	Micronucleus test on <scp><i>T</i></scp> <i>riturus carnifex</i> as a tool for environmental biomonitoring. Environmental and Molecular Mutagenesis, 2015, 56, 412-417.	2.2	8
23	Contrasted influences of moon phases on the reproduction and movement patterns of four amphibian species inhabiting differentÂhabitats in central Italy. Amphibia - Reptilia, 2014, 35, 247-254.	0.5	11
24	Conservation of phylogeographic lineages under climate change. Global Ecology and Biogeography, 2013, 22, 93-104.	5.8	105
25	Protected areas and insect conservation: questioning the effectiveness of <scp>N</scp> atura 2000 network for saproxylic beetles in <scp>I</scp> taly. Animal Conservation, 2013, 16, 370-378.	2.9	71
26	Possible directions in the protection of the neglected invertebrate biodiversity. Animal Conservation, 2013, 16, 383-385.	2.9	4
27	From Continental Priorities to Local Conservation: A Multi-Level Analysis for African Tortoises. PLoS ONE, 2013, 8, e77093.	2.5	8
28	Patterns in diurnal co-occurrence in an assemblage of hoverflies (Diptera: Syrphidae). European Journal of Entomology, 2013, 110, 649-656.	1.2	5
29	Amphibians conservation in Italy: The contribution of the WWF Oases network. Italian Journal of Zoology, 2012, 79, 287-295.	0.6	3
30	A model of co-occurrence: segregation and aggregation patterns in the mycoflora of the crayfish Procambarus clarkii in Lake Trasimeno (central Italy). Journal of Limnology, 2012, 71, 14.	1.1	21
31	Scaling down distribution maps from atlas data: a test of different approaches with virtual species. Journal of Biogeography, 2012, 39, 640-651.	3.0	48
32	Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy?. Biological Conservation, 2011, 144, 989-997.	4.1	72
33	When the method for mapping species matters: defining priority areas for conservation of African freshwater turtles. Diversity and Distributions, 2011, 17, 581-592.	4.1	31
34	Climate change threatens the survival of highly endangered Sardinian populations of the snake Hemorrhois hippocrepis. Animal Biology, 2011, 61, 239-248.	1.0	6
35	Withinâ€ŧaxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography, 2010, 33, 990-1003.	4.5	181
36	Human-provoked amphibian decline in central Italy and the efficacy of protected areas. Wildlife Research, 2010, 37, 547.	1.4	3

#	Article	IF	CITATIONS
37	Global warming and biodiversity: Evidence of climate-linked amphibian declines in Italy. Biological Conservation, 2009, 142, 3060-3067.	4.1	52

The effects of temperature and pH on the embryonic development of two species of Triturus (Caudata:) Tj ETQq0 0.0 rgBT /Overlock 10

39	The normal development and the chromosome No.Â1 syndrome in <i>Triturus carnifex carnifex</i> (Caudata, Salamandridae). Italian Journal of Zoology, 2006, 73, 325-333.	0.6	5
40	ClimateFish: A Collaborative Database to Track the Abundance of Selected Coastal Fish Species as Candidate Indicators of Climate Change in the Mediterranean Sea. Frontiers in Marine Science, 0, 9, .	2.5	2