Richard M Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4357425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Selfâ€Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance. Advanced Materials, 2018, 30, e1704477.	11.1	363
2	Cucurbit[<i>n</i>]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials. Accounts of Chemical Research, 2017, 50, 208-217.	7.6	181
3	Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry. ACS Nano, 2016, 10, 8443-8449.	7.3	161
4	Differentially Addressable Cavities within Metal–Organic Cage-Cross-Linked Polymeric Hydrogels. Journal of the American Chemical Society, 2015, 137, 9722-9729.	6.6	148
5	Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nature Materials, 2022, 21, 352-358.	13.3	129
6	Hierarchical Photonic Pigments <i>via</i> the Confined Self-Assembly of Bottlebrush Block Copolymers. ACS Nano, 2019, 13, 1764-1771.	7.3	107
7	Interfacial assembly of dendritic microcapsules with host–guest chemistry. Nature Communications, 2014, 5, 5772.	5.8	101
8	Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays. Advanced Functional Materials, 2019, 29, 1804531.	7.8	87
9	Supramolecular hydrogel microcapsules via cucurbit[8]uril host–guest interactions with triggered and UV-controlled molecular permeability. Chemical Science, 2015, 6, 4929-4933.	3.7	77
10	Angularâ€Independent Photonic Pigments via the Controlled Micellization of Amphiphilic Bottlebrush Block Copolymers. Advanced Materials, 2020, 32, e2002681.	11.1	73
11	Visual Appearance of Chiral Nematic Celluloseâ€Based Photonic Films: Angular and Polarization Independent Color Response with a Twist. Advanced Materials, 2019, 31, e1905151.	11.1	67
12	Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles. Nature Communications, 2022, 13, 2657.	5.8	60
13	Recent Advances in Block Copolymer Selfâ€Assembly for the Fabrication of Photonic Films and Pigments. Advanced Optical Materials, 2021, 9, 2100519.	3.6	54
14	Mechanochromic, Structurally Colored, and Edible Hydrogels Prepared from Hydroxypropyl Cellulose and Gelatin. Advanced Materials, 2021, 33, e2102112.	11.1	50
15	Structurally Colored Radiative Cooling Cellulosic Films. Advanced Science, 2022, 9, .	5.6	49
16	Controlling the Self-Assembly Behavior of Aqueous Chitin Nanocrystal Suspensions. Biomacromolecules, 2019, 20, 2830-2838.	2.6	48
17	Supramolecular colloidosomes: fabrication, characterisation and triggered release of cargo. Chemical Communications, 2014, 50, 7048-7051.	2.2	45
18	Electrostatically Directed Selfâ€Assembly of Ultrathin Supramolecular Polymer Microcapsules. Advanced Functional Materials. 2015, 25, 4091-4100.	7.8	44

RICHARD M PARKER

#	Article	IF	CITATIONS
19	Using the photoinduced reversible refractive-index change of an azobenzene co-polymer to reconfigure an optical Bragg grating. Journal of Materials Chemistry, 2010, 20, 9118.	6.7	38
20	3D Printing of Liquid Crystalline Hydroxypropyl Cellulose—toward Tunable and Sustainable Volumetric Photonic Structures. Advanced Functional Materials, 2022, 32, .	7.8	38
21	Cellulose photonic pigments. Nature Communications, 2022, 13, .	5.8	38
22	Aqueous interfacial gels assembled from small molecule supramolecular polymers. Chemical Science, 2017, 8, 1350-1355.	3.7	35
23	Formation of Cucurbit[8]uril-Based Supramolecular Hydrogel Beads Using Droplet-Based Microfluidics. Biomacromolecules, 2015, 16, 2743-2749.	2.6	34
24	Microfluidic Droplet-Facilitated Hierarchical Assembly for Dual Cargo Loading and Synergistic Delivery. ACS Applied Materials & Interfaces, 2016, 8, 8811-8820.	4.0	33
25	Direct UV-written planar Bragg grating sensors. Measurement Science and Technology, 2015, 26, 112001.	1.4	29
26	Dual-responsive supramolecular colloidal microcapsules from cucurbit[8]uril molecular recognition in microfluidic droplets. Polymer Chemistry, 2016, 7, 5996-6002.	1.9	22
27	An investigation into relative humidity measurement using an aluminosilicate sol–gel thin film as the active layer in an integrated optical Bragg grating refractometer. Sensors and Actuators B: Chemical, 2013, 188, 857-866.	4.0	20
28	Revealing the Structural Coloration of Selfâ€Assembled Chitin Nanocrystal Films. Advanced Materials, 2022, 34, .	11.1	19
29	Microcapsule Buckling Triggered by Compression-Induced Interfacial Phase Change. Langmuir, 2016, 32, 10987-10994.	1.6	16
30	In vacuo measurement of the sensitivity limit of planar Bragg grating sensors for monolayer detection. Applied Physics Letters, 2009, 95, 173306.	1.5	15
31	An investigation into dispersion upon switching between solvents within a microfluidic system using a chemically resistant integrated optical refractive index sensor. Lab on A Chip, 2013, 13, 377-385.	3.1	14
32	An integrated optical Bragg grating refractometer for volatile organic compound detection. Sensors and Actuators B: Chemical, 2016, 232, 595-604.	4.0	13
33	A temperature-insensitive Bragg grating sensor—Using orthogonal polarisation modes for in situ temperature compensation. Sensors and Actuators B: Chemical, 2010, 145, 428-432.	4.0	10
34	The Limited Palette for Photonic Blockâ€Copolymer Materials: A Historical Problem or a Practical Limitation?. Angewandte Chemie - International Edition, 2022, 61, e202117275.	7.2	10
35	Supracolloidal Architectures Selfâ€Assembled in Microdroplets. Chemistry - A European Journal, 2015, 21, 15516-15519.	1.7	9
36	Deconvoluting the Optical Response of Biocompatible Photonic Pigments. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7

RICHARD M PARKER

#	Article	IF	CITATIONS
37	Monolayer detection of ion binding at a crown ether-functionalised supramolecular surface via an integrated optical Bragg grating. Analyst, The, 2014, 139, 2774-2782.	1.7	4
38	Tracking a photo-switchable surface-localised supramolecular interaction via refractive index. Journal of Materials Chemistry C, 2016, 4, 1178-1185.	2.7	4
39	The Limited Palette for Photonic Blockâ€Copolymer Materials: A Historical Problem or a Practical Limitation?. Angewandte Chemie, 0, , .	1.6	4
40	An integrated bragg grating oxygen sensor using a hydrophobic sol-gel layer doped with an organic dye. , 2011, , .		2
41	A Bragg grating sensor for detection of monolayers at a surface. , 2009, , .		1
42	Athermal planar Bragg grating device for integrated photonic networks. Electronics Letters, 2010, 46, 358.	0.5	1
43	An Integrated Optofluidic Bragg Grating Device to Measure the Dynamic Composition of a Fluid System. , 2010, , .		1
44	In vacuo measurement of the sensitivity limit of planar Bragg sensors. , 2009, , .		0
45	Integrated Temperature Compensated Bragg Grating Refractometer – Benefiting from Birefringence. , 2010, , .		0
46	Optofluidic integrated bragg grating chemical sensor: Utilising a sodium-selective receptor surface to enhance detection. , 2011, , .		0
47	UV written integrated Bragg grating sensors. , 2015, , .		0
48	Optofluidic Bragg Grating Sensor for Monolayer Detection. , 2009, , .		0
49	Direct UV Written Planar Bragg Gratings Integrated to Achieve Localised Multi-Parameter Sensing. , 2010, , .		0
50	Deconvoluting the Optical Response of Biocompatible Photonic Pigments. Angewandte Chemie, 0, , .	1.6	0