Alissa M Weaver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4357402/publications.pdf

Version: 2024-02-01

76 papers

11,012 citations

44069 48 h-index 74 g-index

82 all docs 82 docs citations

times ranked

82

14045 citing authors

#	Article	IF	CITATIONS
1	Sunitinib and Axitinib increase secretion and glycolytic activity of small extracellular vesicles in renal cell carcinoma. Cancer Gene Therapy, 2022, 29, 683-696.	4.6	4
2	VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites. Developmental Cell, 2022, 57, 974-994.e8.	7.0	49
3	Extracellular Vesicles and Their Emerging Roles as Cellular Messengers in Endocrinology: An Endocrine Society Scientific Statement. Endocrine Reviews, 2022, 43, 441-468.	20.1	40
4	Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF- \hat{l}^2 signaling. Cell Reports, 2021, 34, 108829.	6.4	50
5	Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell, 2021, 39, 361-379.e16.	16.8	189
6	Extracellular vesicles: Critical players during cell migration. Developmental Cell, 2021, 56, 1861-1874.	7.0	62
7	Depletion of METTL3 alters cellular and extracellular levels of miRNAs containing m6A consensus sequences. Heliyon, 2021, 7, e08519.	3.2	7
8	Argonautes in Extracellular Vesicles: Artifact or Selected Cargo?. Cancer Research, 2020, 80, 379-381.	0.9	20
9	Inhibition of $\hat{l}\pm\hat{vl^2}$ 3 integrin impairs adhesion and uptake of tumor-derived small extracellular vesicles. Cell Communication and Signaling, 2020, 18, 158.	6.5	38
10	Announcing the ISEV2020 special achievement award recipients: Andrew Hill and Edit Buz \tilde{A}_i s; and the recipient of the ISEV2020 special education award: Carolina Soekmadji. Journal of Extracellular Vesicles, 2020, 10, e12021.	12.2	0
11	A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nature Communications, 2020, 11 , 2092.	12.8	162
12	Modeling heterogeneous tumor growth dynamics and cell–cell interactions at single-cell and cell-population resolution. Current Opinion in Systems Biology, 2019, 17, 24-34.	2.6	30
13	The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell, 2019, 177, 231-242.	28.9	152
14	Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs. Journal of Proteome Research, 2019, 18, 947-959.	3.7	71
15	EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight, 2019, 4, .	5.0	88
16	$\hat{l}\pm5\hat{l}^21$ integrin trafficking and Rac activation are regulated by APPL1 in a Rab5-dependent manner to inhibit cell migration. Journal of Cell Science, 2018, 131, .	2.0	14
17	Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA Strategic Workshop. JCI Insight, 2018, 3, .	5.0	41
18	Diverse Long RNAs Are Differentially Sorted into Extracellular Vesicles Secreted by Colorectal Cancer Cells. Cell Reports, 2018, 25, 715-725.e4.	6.4	102

#	Article	IF	CITATIONS
19	Extracellular vesicles: important collaborators in cancer progression. Essays in Biochemistry, 2018, 62, 149-163.	4.7	55
20	Directed migration: Cells navigate by extracellular vesicles. Journal of Cell Biology, 2018, 217, 2613-2614.	5.2	12
21	Exosome secretion promotes chemotaxis of cancer cells. Cell Adhesion and Migration, 2017, 11, 187-195.	2.7	96
22	Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends in Cell Biology, 2017, 27, 172-188.	7.9	1,087
23	Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. Journal of Cell Biology, 2017, 216, 3799-3816.	5.2	402
24	Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. Journal of Extracellular Vesicles, 2017, 6, 1396823.	12.2	185
25	Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Scientific Reports, 2016, 6, 37982.	3.3	268
26	KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Reports, 2016, 15, 978-987.	6.4	328
27	Cortactin promotes exosome secretion by controlling branched actin dynamics. Journal of Cell Biology, 2016, 214, 197-213.	5.2	226
28	Regulation of invadopodia by mechanical signaling. Experimental Cell Research, 2016, 343, 89-95.	2.6	61
29	Laminin-111 peptide C16 regulates invadopodia activity of malignant cells through \hat{l}^21 integrin, Src and ERK 1/2. Oncotarget, 2016, 7, 47904-47917.	1.8	19
30	Biogenesis, delivery, and function of extracellular RNA. Journal of Extracellular Vesicles, 2015, 4, 27494.	12.2	80
31	KRAS-dependent sorting of miRNA to exosomes. ELife, 2015, 4, e07197.	6.0	296
32	Proteolysis of EphA2 Converts It from a Tumor Suppressor to an Oncoprotein. Cancer Research, 2015, 75, 3327-3339.	0.9	39
33	Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer*. Molecular and Cellular Proteomics, 2015, 14, 1959-1976.	3.8	44
34	Response of Head and Neck Squamous Cell Carcinoma Cells Carrying <i>PIK3CA </i> Mutations to Selected Targeted Therapies. JAMA Otolaryngology - Head and Neck Surgery, 2015, 141, 543.	2.2	25
35	Directional cell movement through tissues is controlled by exosome secretion. Nature Communications, 2015, 6, 7164.	12.8	457
36	Arrestins regulate cell spreading and motility via focal adhesion dynamics. Molecular Biology of the Cell, 2015, 26, 622-635.	2.1	30

#	Article	IF	CITATIONS
37	PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin–actin interactions. Journal of Cell Biology, 2015, 210, 753-769.	5.2	67
38	Linking patient outcome to high throughput protein expression data identifies novel regulators of colorectal adenocarcinoma aggressiveness. F1000Research, 2015, 4, 99.	1.6	9
39	PI(3,5)P ₂ controls endosomal branched actin dynamics by regulating cortactin–actin interactions. Journal of General Physiology, 2015, 146, 1463OIA50.	1.9	0
40	A Three-Dimensional Computational Model of Collagen Network Mechanics. PLoS ONE, 2014, 9, e111896.	2.5	63
41	3D Collagen Alignment Limits Protrusions to Enhance Breast Cancer Cell Persistence. Biophysical Journal, 2014, 107, 2546-2558.	0.5	346
42	Exosome Secretion Is Enhanced by Invadopodia and Drives Invasive Behavior. Cell Reports, 2013, 5, 1159-1168.	6.4	428
43	Signaling inputs to invadopodia and podosomes. Journal of Cell Science, 2013, 126, 2979-89.	2.0	145
44	WAVE2 Regulates Epithelial Morphology and Cadherin Isoform Switching through Regulation of Twist and Abl. PLoS ONE, 2013, 8, e64533.	2.5	14
45	Synthetic and Tissue-Derived Models for Studying Rigidity Effects on Invadopodia Activity. Methods in Molecular Biology, 2013, 1046, 171-189.	0.9	10
46	Network Analysis of the Focal Adhesion to Invadopodia Transition Identifies a PI3K-PKCα Invasive Signaling Axis. Science Signaling, 2012, 5, ra66.	3.6	69
47	Establishment and Validation of Computational Model for MT1-MMP Dependent ECM Degradation and Intervention Strategies. PLoS Computational Biology, 2012, 8, e1002479.	3.2	66
48	Adhesion rings surround invadopodia and promote maturation. Biology Open, 2012, 1, 711-722.	1.2	117
49	Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton, 2012, 69, 625-643.	2.0	38
50	Sensing and Modulation of Invadopodia across a Wide Range of Rigidities. Biophysical Journal, 2011, 100, 573-582.	0.5	108
51	Cell–Cell Fusion: A New Function for Invadosomes. Current Biology, 2011, 21, R121-R123.	3.9	7
52	Cortactin Controls Cell Motility and Lamellipodial Dynamics by Regulating ECM Secretion. Current Biology, 2011, 21, 1460-1469.	3.9	79
53	Regulation of lysosomal secretion by cortactin drives fibronectin deposition and cell motility. Bioarchitecture, 2011, 1, 257-260.	1.5	12
54	Cortactin. Cell Adhesion and Migration, 2011, 5, 187-198.	2.7	152

#	Article	IF	CITATIONS
55	Lamininâ€332–β1 integrin interactions negatively regulate invadopodia. Journal of Cellular Physiology, 2010, 223, 134-142.	4.1	26
56	A Mathematical Model Quantifies Proliferation and Motility Effects of TGF- \hat{l}^2 on Cancer Cells. Computational and Mathematical Methods in Medicine, 2009, 10, 71-83.	1.3	22
57	Microenvironmental Independence Associated with Tumor Progression. Cancer Research, 2009, 69, 8797-8806.	0.9	60
58	Regulation of cancer invasiveness by the physical extracellular matrix environment. Cell Adhesion and Migration, 2009, 3, 288-292.	2.7	74
59	Regulation of Cancer Invasion by Reactive Oxygen Species and Tks Family Scaffold Proteins. Science Signaling, 2009, 2, pe56.	3.6	31
60	A new role for cortactin in invadopodia: Regulation of protease secretion. European Journal of Cell Biology, 2008, 87, 581-590.	3.6	145
61	Invadopodia. Current Biology, 2008, 18, R362-R364.	3.9	61
62	Extracellular Matrix Rigidity Promotes Invadopodia Activity. Current Biology, 2008, 18, 1295-1299.	3.9	285
63	Dependence of Invadopodia Function on Collagen Fiber Spacing and Cross-Linking: Computational Modeling and Experimental Evidence. Biophysical Journal, 2008, 95, 2203-2218.	0.5	67
64	Cortactin in tumor invasiveness. Cancer Letters, 2008, 265, 157-166.	7.2	193
65	N-WASP and the Arp2/3 Complex Are Critical Regulators of Actin in the Development of Dendritic Spines and Synapses. Journal of Biological Chemistry, 2008, 283, 15912-15920.	3.4	188
66	Cortactin Is an Essential Regulator of Matrix Metalloproteinase Secretion and Extracellular Matrix Degradation in Invadopodia. Cancer Research, 2007, 67, 4227-4235.	0.9	396
67	Extracellular Matrix Degradation by Invadopodia. FASEB Journal, 2007, 21, A91.	0.5	0
68	Tumor Morphology and Phenotypic Evolution Driven by Selective Pressure from the Microenvironment. Cell, 2006, 127, 905-915.	28.9	714
69	Invadopodia: Specialized Cell Structures for Cancer Invasion. Clinical and Experimental Metastasis, 2006, 23, 97-105.	3.3	369
70	Cortactin Promotes Cell Motility by Enhancing Lamellipodial Persistence. Current Biology, 2005, 15, 1276-1285.	3.9	248
71	CAS promotes invasiveness of Src-transformed cells. Oncogene, 2004, 23, 7406-7415.	5.9	85
72	Integration of signals to the Arp2/3 complex. Current Opinion in Cell Biology, 2003, 15, 23-30.	5.4	171

#	Article	IF	CITATIONS
73	Cortactin Interacts with WIP in Regulating Arp2/3 Activation and Membrane Protrusion. Current Biology, 2003, 13, 384-393.	3.9	159
74	Interaction of Cortactin and N-WASp with Arp2/3 Complex. Current Biology, 2002, 12, 1270-1278.	3.9	238
75	Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Current Biology, 2001, 11, 370-374.	3.9	540
76	Cortactin Localization to Sites of Actin Assembly in Lamellipodia Requires Interactions with F-Actin and the Arp2/3 Complex. Journal of Cell Biology, 2000, 151, 29-40.	5.2	369