Vilas Menon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4357400/publications.pdf

Version: 2024-02-01

182225 175968 6,889 63 30 55 h-index citations g-index papers 11457 87 87 87 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Epigenomic features related to microglia are associated with attenuated effect of <i>APOE</i> $\hat{l}\mu 4$ on Alzheimer's disease risk in humans. Alzheimer's and Dementia, 2022, 18, 688-699.	0.4	9
2	Aging disrupts circadian gene regulation and function in macrophages. Nature Immunology, 2022, 23, 229-236.	7.0	56
3	Translational approaches to understanding resilience to Alzheimer's disease. Trends in Neurosciences, 2022, 45, 369-383.	4.2	28
4	Genotype–phenotype correlation of T-cell subtypes reveals senescent and cytotoxic genes in Alzheimer's disease. Human Molecular Genetics, 2022, 31, 3355-3366.	1.4	2
5	Single Cell/Nucleus Transcriptomics Comparison in Zebrafish and Humans Reveals Common and Distinct Molecular Responses to Alzheimer's Disease. Cells, 2022, 11, 1807.	1.8	19
6	DIPG-45. Radiation induces a robust interferon response in Diffuse Midline Glioma (DMG), improving the potential for combination immunotherapy. Neuro-Oncology, 2022, 24, i28-i29.	0.6	0
7	RNASE6 is a novel modifier of APOE-ε4 effects on cognition. Neurobiology of Aging, 2022, 118, 66-76.	1.5	5
8	Selecting single cell clustering parameter values using subsampling-based robustness metrics. BMC Bioinformatics, 2021, 22, 39.	1.2	45
9	Molecular correlates of muscle spindle and Golgi tendon organ afferents. Nature Communications, 2021, 12, 1451.	5.8	43
10	Complexity and graded regulation of neuronal cell-type–specific alternative splicing revealed by single-cell RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
11	A comprehensive analysis of gene expression changes in a high replicate and open-source dataset of differentiating hiPSC-derived cardiomyocytes. Scientific Reports, 2021, 11, 15845.	1.6	28
12	A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nature Communications, 2021, 12, 5722.	5.8	116
13	An immune response characterizes early Alzheimer's disease pathology and subjective cognitive impairment in hydrocephalus biopsies. Nature Communications, 2021, 12, 5659.	5.8	6
14	Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron, 2021, 109, 3402-3420.e9.	3.8	75
15	Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. ELife, 2021, 10, .	2.8	41
16	An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients. IScience, 2021, 24, 103221.	1.9	27
17	91â€lmpact of ultra-fast â€~FLASH' radiotherapy on single cell immunogenomics in diffuse intrinsic pontine glioma (DIPG). , 2021, 9, A100-A100.		1
18	Cell type-specific Alzheimer's disease polygenic risk scores are associated with distinct disease processes in preclinical Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e055304.	0.4	0

#	Article	IF	CITATIONS
19	Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science, 2020, 370, .	6.0	104
20	Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer's disease. Nature Communications, 2020, 11, 6129.	5.8	371
21	Single cell RNA sequencing of human microglia uncovers a subset that is associated with Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e038589.	0.4	18
22	Single nuclear RNA sequencing reveals microglia diversity associated with cognitive resilience in the ADâ€BXD mouse model of human Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e041543.	0.4	0
23	Identifying gene expression signatures in individuals with minimal cognitive impairment in the presence of advanced Alzheimer's disease pathology. Alzheimer's and Dementia, 2020, 16, e043424.	0.4	0
24	Identification of dysregulated lipid metabolic pathways in mouse embryonic derived neurons and in a mouse model of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e044063.	0.4	0
25	Lipid profiling of healthy and Alzheimer'sâ€affected mouse brains by using DESI imaging mass spectrometry: How lipid dyshomeostasis can contribute to Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e047644.	0.4	0
26	Epigenomic features related to microglia are associated with attenuated effect of APOE Îμ4 on Alzheimer's disease risk in humans. Alzheimer's and Dementia, 2020, 16, e043533.	0.4	2
27	Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathologica Communications, 2020, 8, 19.	2.4	175
28	Assessment of Spontaneous Neuronal Activity (i) In Vitro (i) Using Multi-Well Multi-Electrode Arrays: Implications for Assay Development. ENeuro, 2020, 7, ENEURO.0080-19.2019.	0.9	38
29	scOrangeâ€"a tool for hands-on training of concepts from single-cell data analytics. Bioinformatics, 2019, 35, i4-i12.	1.8	8
30	Molecular Logic of Spinocerebellar Tract Neuron Diversity and Connectivity. Cell Reports, 2019, 27, 2620-2635.e4.	2.9	36
31	Identification of Cell Types from Single-Cell Transcriptomic Data. Methods in Molecular Biology, 2019, 1935, 45-77.	0.4	16
32	Generalized leaky integrate-and-fire models classify multiple neuron types. Nature Communications, 2018, 9, 709.	5.8	164
33	Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data. Briefings in Functional Genomics, 2018, 17, 240-245.	1.3	55
34	Continuous Variation within Cell Types of the Nervous System. Trends in Neurosciences, 2018, 41, 337-348.	4.2	66
35	Distinct descending motor cortex pathways and their roles in movement. Nature, 2018, 563, 79-84.	13.7	320
36	Shared and distinct transcriptomic cell types across neocortical areas. Nature, 2018, 563, 72-78.	13.7	1,323

3

#	Article	IF	Citations
37	Extracting new insights from bulk transcriptomics. Nature Neuroscience, 2018, 21, 1142-1144.	7.1	2
38	Single-Cell Profiling of an InÂVitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation. Neuron, 2017, 93, 1035-1048.e5.	3.8	43
39	Single-Cell Transcriptomic Characterization of Vertebrate Brain Composition, Development, and Function., 2017,, 437-468.		7
40	A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development. Cell Stem Cell, 2017, 20, 120-134.	5.2	118
41	Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. ELife, 2017, 6, .	2.8	42
42	Discovering sparse transcription factor codes for cell states and state transitions during development. ELife, 2017, 6, .	2.8	26
43	Inferring cortical function in the mouse visual system through large-scale systems neuroscience. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7337-7344.	3.3	82
44	Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience, 2016, 19, 335-346.	7.1	1,522
45	Genome engineering of isogenic human ES cells to model autism disorders. Nucleic Acids Research, 2015, 43, e65-e65.	6.5	15
46	Canonical genetic signatures of the adult human brain. Nature Neuroscience, 2015, 18, 1832-1844.	7.1	503
47	Correlated Gene Expression and Target Specificity Demonstrate Excitatory Projection Neuron Diversity. Cerebral Cortex, 2015, 25, 433-449.	1.6	125
48	Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq. BMC Genomics, 2014, 15, 154.	1.2	49
49	CORTECON: A Temporal Transcriptome Analysis of InÂVitro Human Cerebral Cortex Development from Human Embryonic Stem Cells. Neuron, 2014, 83, 51-68.	3.8	172
50	A High-Resolution Spatiotemporal Atlas of Gene Expression of the Developing Mouse Brain. Neuron, 2014, 83, 309-323.	3.8	246
51	Balanced Synaptic Impact via Distance-Dependent Synapse Distribution and Complementary Expression of AMPARs and NMDARs in Hippocampal Dendrites. Neuron, 2013, 80, 1451-1463.	3.8	37
52	Modeling Proteins Using a Super-Secondary Structure Library and NMR Chemical Shift Information. Structure, 2013, 21, 891-899.	1.6	15
53	The Influence of Synaptic Weight Distribution on Neuronal Population Dynamics. PLoS Computational Biology, 2013, 9, e1003248.	1.5	58
54	DYNAMIC BAYESIAN CLUSTERING. Journal of Bioinformatics and Computational Biology, 2013, 11, 1342001.	0.3	5

VILAS MENON

#	Article	IF	CITATION
55	Multi-scale correlation structure of gene expression in the brain. Neural Networks, 2011, 24, 933-942.	3.3	45
56	Frozen tissue can provide reproducible proteomic results of subcellular fractionation. Analytical Biochemistry, 2011, 418, 78-84.	1.1	6
57	Hallmarks of Molecular Action of Microtubule Stabilizing Agents. Journal of Biological Chemistry, 2011, 286, 11765-11778.	1.6	59
58	Abstract 2678: Molecular signature of drug action for microtubule stabilizing agents., 2010,,.		0
59	A state-mutating genetic algorithm to design ion-channel models. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16829-16834.	3.3	45
60	Synapse Distribution Suggests a Two-Stage Model of Dendritic Integration in CA1 Pyramidal Neurons. Neuron, 2009, 63, 171-177.	3.8	148
61	Distinct Pose of Discodermolide in Taxol Binding Pocket Drives a Complementary Mode of Microtubule Stabilization. Biochemistry, 2009, 48, 11664-11677.	1.2	45
62	Disinfection of Contaminated Water by Using Solar Irradiation. Applied and Environmental Microbiology, 2004, 70, 1145-1151.	1.4	89
63	Bulk and Single-Nucleus Transcriptomics Highlight Intra-Telencephalic and Somatostatin Neurons in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	14