Remco Tuinier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4357329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distribution of block copolymers in drying polymer films. Journal of Colloid and Interface Science, 2022, 612, 617-627.	5.0	2
2	The depletion thickness in solutions of semi-flexible polymers near colloidal surfaces: analytical approximations. Physical Chemistry Chemical Physics, 2022, 24, 3618-3631.	1.3	3
3	Computational study of the structural properties of recycled low-density polyethylene. Polymer, 2022, 241, 124525.	1.8	3
4	Effects of polymer nonideality on depletion-induced phase behaviour of colloidal disks and rods. Journal of Physics Condensed Matter, 2022, 34, 144008.	0.7	0
5	Characterization of hen phosvitin in aqueous salt solutions: Size, structure, and aggregation. Food Hydrocolloids, 2022, 129, 107545.	5.6	6
6	Excluded volume interactions and phase stability in mixtures of hard spheres and hard rods. Physical Chemistry Chemical Physics, 2022, , .	1.3	4
7	The Asakura–Oosawa theory: Entropic forces in physics, biology, and soft matter. Journal of Chemical Physics, 2022, 156, 080401.	1.2	19
8	Assembly of partially covered strawberry supracolloids in dilute and concentrate aqueous dispersions. Journal of Colloid and Interface Science, 2022, 627, 827-837.	5.0	2
9	Kinetic state diagrams for a highly asymmetric block copolymer assembled in solution. Soft Matter, 2021, 17, 1084-1090.	1.2	5
10	Co-assembly of precision polyurethane ionomers reveals role of and interplay between individual components. Polymer Chemistry, 2021, 12, 2891-2903.	1.9	5
11	Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions. Journal of Chemical Physics, 2021, 154, 074902.	1.2	9
12	Solvent Selectivity Governs the Emergence of Temperature Responsiveness in Block Copolymer Self-Assembly. Macromolecules, 2021, 54, 2912-2920.	2.2	3
13	Phase separation in mixed suspensions of bacteria and nonadsorbing polymers. Journal of Chemical Physics, 2021, 154, 151101.	1.2	7
14	Repulsive and attractive depletion forces mediated by nonadsorbing polyelectrolytes in the Donnan limit. Journal of Chemical Physics, 2021, 154, 164904.	1.2	7
15	Phase stability of colloidal mixtures of spheres and rods. Journal of Chemical Physics, 2021, 154, 204906.	1.2	10
16	Phase stability of colloidal spheres mixed with supramolecular rodâ€like polymers. Journal of Polymer Science, 2021, 59, 1175-1187.	2.0	5
17	From a eutectic mixture to a deep eutectic system via anion selection: Glutaric acid + tetraethylammonium halides. Journal of Chemical Physics, 2021, 155, 014502.	1.2	16
18	Phase Stability of Colloidal Spheres Mixed with Semiflexible Supramolecular Polymers. Journal of Colloid and Interface Science, 2021, 608, 644-651.	5.0	7

#	Article	IF	CITATIONS
19	Multiphase Coexistences in Rod–Polymer Mixtures. Langmuir, 2021, 37, 11582-11591.	1.6	4
20	Dispersion activity coefficient models. Part 3: A topology preserving group contribution model. Fluid Phase Equilibria, 2021, 544-545, 113097.	1.4	1
21	Chain length of bioinspired polyamines affects size and condensation of monodisperse silica particles. Communications Chemistry, 2021, 4, .	2.0	5
22	(Homo)polymer-mediated colloidal stability of micellar solutions. Soft Matter, 2020, 16, 1560-1571.	1.2	7
23	Oil-in-water emulsions based on hydrophobic eutectic systems. Physical Chemistry Chemical Physics, 2020, 22, 2181-2187.	1.3	12
24	Scattering from colloidal cubic silica shells: Part I, particle form factors and optical contrast variation. Journal of Colloid and Interface Science, 2020, 571, 419-428.	5.0	11
25	Experimental Evidence for Algebraic Double-Layer Forces. Langmuir, 2020, 36, 47-54.	1.6	7
26	Architecture-Dependent Interplay between Self-Assembly and Crystallization in Discrete Block Co-Oligomers. ACS Macro Letters, 2020, 9, 38-42.	2.3	11
27	Polymer-mediated colloidal stability: on the transition between adsorption and depletion. Advances in Colloid and Interface Science, 2020, 275, 102077.	7.0	27
28	Entropy models for the description of the solid–liquid regime of deep eutectic solutions. Journal of Molecular Liquids, 2020, 302, 112155.	2.3	19
29	Directional-dependent pockets drive columnar–columnar coexistence. Soft Matter, 2020, 16, 6720-6724.	1.2	3
30	Defying the Gibbs Phase Rule: Evidence for an Entropy-Driven Quintuple Point in Colloid-Polymer Mixtures. Physical Review Letters, 2020, 125, 127803.	2.9	21
31	Design of Nonideal Eutectic Mixtures Based on Correlations with Molecular Properties. Journal of Physical Chemistry B, 2020, 124, 5209-5219.	1.2	16
32	Phase stability of dispersions of hollow silica nanocubes mediated by non-adsorbing polymers. European Physical Journal E, 2020, 43, 38.	0.7	7
33	Design of the ocular coil, a new device for non-invasive drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 150, 120-130.	2.0	13
34	Block copolymer hierarchical structures from the interplay of multiple assembly pathways. Polymer Chemistry, 2020, 11, 2305-2311.	1.9	2
35	Algebraic equations of state for the liquid crystalline phase behavior of hard rods. Physical Review E, 2020, 101, 062707.	0.8	13
36	Selective colloidal bonds via polymer-mediated interactions. Soft Matter, 2020, 16, 7438-7446.	1.2	9

#	Article	IF	CITATIONS
37	Scattering from colloidal cubic silica shells: Part II, static structure factors and osmotic equation of state. Journal of Colloid and Interface Science, 2020, 571, 267-274.	5.0	7
38	Dual responsive PMEEECL–PAE block copolymers: a computational self-assembly and doxorubicin uptake study. RSC Advances, 2020, 10, 3233-3245.	1.7	6
39	Design principles for metamorphic block copolymer assemblies. Soft Matter, 2020, 16, 2342-2349.	1.2	3
40	Flow induced by an oscillating sphere in probing complex viscosity of polymer solutions. Physical Review Fluids, 2020, 5, .	1.0	2
41	Quantification of the Structure of Colloidal Gas-Liquid Interfaces. Journal of Physical Chemistry Letters, 2020, 11, 8372-8377.	2.1	0
42	Quantification of the Structure of Colloidal Gas–Liquid Interfaces. Journal of Physical Chemistry Letters, 2020, 11, 8372-8377.	2.1	4
43	A Single Thermoresponsive Diblock Copolymer Can Form Spheres, Worms or Vesicles in Aqueous Solution. Angewandte Chemie, 2019, 131, 19140-19146.	1.6	19
44	Dispersion activity coefficient models. Part 1: Cubic equations of state. Fluid Phase Equilibria, 2019, 501, 112275.	1.4	2
45	A Single Thermoresponsive Diblock Copolymer Can Form Spheres, Worms or Vesicles in Aqueous Solution. Angewandte Chemie - International Edition, 2019, 58, 18964-18970.	7.2	74
46	Dispersion activity coefficient models. Part 2: Perturbed chain equations of state. Fluid Phase Equilibria, 2019, 502, 112286.	1.4	1
47	Activity modelling of the solid–liquid equilibrium of deep eutectic solvents. Pure and Applied Chemistry, 2019, 91, 1341-1349.	0.9	24
48	Controlling the Spatial Distribution of Solubilized Compounds within Copolymer Micelles. Langmuir, 2019, 35, 4776-4786.	1.6	20
49	<i>In-Situ</i> Liquid Phase Electron Microscopy of Beam-Sensitive Materials. Microscopy and Microanalysis, 2019, 25, 63-64.	0.2	1
50	Liquid–liquid phase separation during amphiphilic self-assembly. Nature Chemistry, 2019, 11, 320-328.	6.6	185
51	A Search for Natural Hydrophobic Deep Eutectic Solvents Based on Natural Components. ACS Sustainable Chemistry and Engineering, 2019, 7, 2933-2942.	3.2	310
52	Micellization of a weakly charged surfactant in aqueous salt solution: Self-consistent field theory and experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 201-208.	2.3	12
53	Determination of the â€~apparent pKa' of selected food hydrocolloids using ortho-toluidine blue. Food Hydrocolloids, 2018, 81, 273-283.	5.6	21
54	On the calculation of nearest neighbors in activity coefficient models. Fluid Phase Equilibria, 2018, 465, 10-23.	1.4	7

#	Article	IF	CITATIONS
55	A roadmap for poly(ethylene oxide)â€ <i>block</i> â€polyâ€îµâ€caprolactone selfâ€assembly in water: Prediction, synthesis, and characterization. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 330-339.	2.4	24
56	Quantification of the liquid window of deep eutectic solvents. Chemical Communications, 2018, 54, 13351-13354.	2.2	93
57	Synthesis of Hollow Silica Nanocubes with Tuneable Size and Shape, Suitable for Light Scattering Studies. Colloids and Interfaces, 2018, 2, 44.	0.9	14
58	Phase behaviour of colloidal superballs mixed with non-adsorbing polymers. European Physical Journal E, 2018, 41, 110.	0.7	9
59	On the Colloidal Stability of Spherical Copolymeric Micelles. ACS Omega, 2018, 3, 17976-17985.	1.6	8
60	A centrifuge method to determine the solid–liquid phase behavior of eutectic mixtures. Journal of Chemical Physics, 2018, 149, 224505.	1.2	17
61	Interactions between amphoteric surfaces with strongly overlapping double layers. Soft Matter, 2018, 14, 4702-4710.	1.2	6
62	Depletion-driven four-phase coexistences in discotic systems. Molecular Physics, 2018, 116, 2757-2772.	0.8	17
63	Phase behavior of hard spheres mixed with supramolecular polymers. Physica A: Statistical Mechanics and Its Applications, 2018, 510, 233-242.	1.2	2
64	Generalization of Guggenheim's combinatorial activity coefficient equation. Journal of Molecular Liquids, 2018, 266, 467-471.	2.3	10
65	Isostructural solid–solid coexistence of colloid–polymer mixtures. Chemical Physics Letters, 2018, 709, 16-20.	1.2	8
66	Liquid Phase Electron Microscopy of Soft Matter. Microscopy and Microanalysis, 2018, 24, 248-249.	0.2	1
67	Toluidine blue-sodium lauryl ether sulfate complexes: Influence of ethylene oxide length. Dyes and Pigments, 2017, 141, 420-427.	2.0	5
68	Entropic patchiness: Effects of colloid shape and depletion. Current Opinion in Colloid and Interface Science, 2017, 30, 54-61.	3.4	33
69	On the driving forces for complexation of methyl orange with polycations. Journal of Colloid and Interface Science, 2017, 491, 141-150.	5.0	7
70	Prevention of Tartrate Crystallization in Wine by Hydrocolloids: The Mechanism Studied by Dynamic Light Scattering. Journal of Agricultural and Food Chemistry, 2017, 65, 8923-8929.	2.4	22
71	On the Repulsive Interaction Between Strongly Overlapping Double Layers of Charge-regulated Surfaces. Colloids and Interface Science Communications, 2017, 21, 10-14.	2.0	10
72	Reversal of metachromasy revisited; displacement of Toluidine-blue from alginate by surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 454-461.	2.3	10

#	Article	IF	CITATIONS
73	Entropic patchiness drives multi-phase coexistence in discotic colloid–depletant mixtures. Scientific Reports, 2017, 7, 17058.	1.6	10
74	A Simple Free Energy for the Isotropic-Nematic Phase Transition of Rods. Advances in Condensed Matter Physics, 2016, 2016, 1-6.	0.4	5
75	Oneâ€pot, solventâ€free, metalâ€free synthesis and UCSTâ€based purification of poly(ethylene) Tj ETQq1 1 0	.784314 rg 2.5	BT /Overlock
76	Phase behaviour of colloids plus weakly adhesive polymers. European Physical Journal E, 2016, 39, 115.	0.7	2
77	Tuning the phase diagram of colloid-polymer mixtures via Yukawa interactions. Physical Review E, 2016, 94, 062607.	0.8	9
78	Self-Organization of Polyurethane Pre-Polymers as Studied by Self-Consistent Field Theory. Macromolecular Theory and Simulations, 2016, 25, 16-27.	0.6	13
79	Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chemical Communications, 2016, 52, 11987-11990.	2.2	196
80	Design of block-copolymer-based micelles for active and passive targeting. Physical Review E, 2016, 94, 042503.	0.8	4
81	Polyelectrolytes adsorbed at water–water interfaces. Physical Chemistry Chemical Physics, 2016, 18, 30931-30939.	1.3	4
82	Studying Polymer Self-Assembly by Combined Cryogenic and Liquid Phase Transmission Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 14-15.	0.2	2
83	Depletion controlled surface deposition of uncharged colloidal spheres from stable bulk dispersions. Soft Matter, 2016, 12, 3963-3971.	1.2	7
84	Polycation–Sodium Lauryl Ether Sulfate-Type Surfactant Complexes: Influence of Ethylene Oxide Length. Journal of Physical Chemistry B, 2015, 119, 6338-6347.	1.2	11
85	Self-Assembled Structures of PMAA–PMMA Block Copolymers: Synthesis, Characterization, and Self-Consistent Field Computations. Macromolecules, 2015, 48, 1194-1203.	2.2	18
86	Multiphase coexistence in mixed suspensions of large and small hard platelets. Molecular Physics, 2015, 113, 2666-2673.	0.8	9
87	Depletion and the dynamics in colloid–polymer mixtures. Current Opinion in Colloid and Interface Science, 2015, 20, 66-70.	3.4	24
88	Stochastic interactions of two Brownian hard spheres in the presence of depletants. Journal of Chemical Physics, 2014, 140, 214906.	1.2	3
89	Nanoprecipitation of polymers in a bad solvent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 225-235.	2.3	50
90	Second Virial Coefficient at the Critical Point in a Fluid of Colloidal Spheres Plus Depletants. Langmuir, 2014, 30, 13121-13124.	1.6	11

#	Article	IF	CITATIONS
91	Rational Synthesis of Low-Polydispersity Block Copolymer Vesicles in Concentrated Solution via Polymerization-Induced Self-Assembly. Journal of the American Chemical Society, 2014, 136, 11100-11106.	6.6	116
92	Phase behaviour of colloids with short-range repulsions plus nonadsorbing polymer chains. Soft Matter, 2013, 9, 9977.	1.2	11
93	Controlled block copolymer micelle formation for encapsulation of hydrophobic ingredients. European Physical Journal E, 2013, 36, 107.	0.7	16
94	Self-consistent field predictions for quenched spherical biocompatible triblock copolymer micelles. Soft Matter, 2013, 9, 7515.	1.2	12
95	Controlled Nanoparticle Formation by Diffusion Limited Coalescence. Physical Review Letters, 2012, 109, 138301.	2.9	34
96	How flow changes polymer depletion in a slit. European Physical Journal E, 2012, 35, 88.	0.7	3
97	Origin of suppressed demixing in casein/xanthan mixtures. Soft Matter, 2012, 8, 1547-1555.	1.2	20
98	Interfacial tension between benzene and water in the presence of caprolactam. Journal of Colloid and Interface Science, 2012, 382, 105-109.	5.0	9
99	Stability of Colloid–Polymer Mixtures. Lecture Notes in Physics, 2011, , 131-175.	0.3	2
100	Phase Transitions in Suspensions of Rod-Like Colloids Plus Polymers. Lecture Notes in Physics, 2011, , 197-228.	0.3	1
101	Phase Transitions of Hard Spheres Plus Depletants; Basics. Lecture Notes in Physics, 2011, , 109-129.	0.3	2
102	Colloids and the Depletion Interaction. Lecture Notes in Physics, 2011, , .	0.3	452
103	Depletion Interaction. Lecture Notes in Physics, 2011, , 57-108.	0.3	40
104	Phase stability of a reversible supramolecular polymer solution mixed with nanospheres. Journal of Physics Condensed Matter, 2011, 23, 194113.	0.7	2
105	Hydrodynamic interaction of two colloids in nonadsorbing polymer solutions. Soft Matter, 2010, 6, 647-654.	1.2	11
106	Polymer depletion-driven cluster aggregation and initial phase separation in charged nanosized colloids. Journal of Chemical Physics, 2009, 130, 204905.	1.2	21
107	High Refractive Index Nanocomposite Fluids for Immersion Lithography. Langmuir, 2009, 25, 2390-2401.	1.6	17
108	Analytical phase diagrams for colloids and non-adsorbing polymer. Advances in Colloid and Interface Science, 2008, 143, 1-47.	7.0	107

#	Article	IF	CITATIONS
109	Phase behaviour of a dispersion of charge-stabilised colloidal spheres with added non-adsorbing interacting polymer chains. European Physical Journal E, 2008, 27, 171-84.	0.7	27
110	Direct measurements of polymer-induced forces. Journal of Physics Condensed Matter, 2008, 20, 073101.	0.7	55
111	A simple patchy colloid model for the phase behavior of lysozyme dispersions. Journal of Chemical Physics, 2008, 129, 085102.	1.2	123
112	Scaling of nanoparticle retardation in semi-dilute polymer solutions. Soft Matter, 2008, 4, 254-257.	1.2	35
113	Phase diagram for a mixture of colloids and polymers with equal size. Europhysics Letters, 2008, 82, 68002.	0.7	36
114	Nanoparticle Retardation in Semidilute Polymer Solutions. AIP Conference Proceedings, 2008, , .	0.3	3
115	Depletion induced isotropic-isotropic phase separation in suspensions of rod-like colloids. Journal of Chemical Physics, 2007, 127, 244909.	1.2	41
116	Motion of a sphere through a polymer solution. Physical Review E, 2007, 75, 011803.	0.8	56
117	Asymptotic analysis of tracer diffusivity in nonadsorbing polymer solutions. Physical Review E, 2007, 76, 051405.	0.8	24
118	Thermodynamic Incompatibility and Complex Formation in Pectin/Caseinate Mixtures. Biomacromolecules, 2007, 8, 3345-3354.	2.6	53
119	Analytical phase diagram for colloid-polymer mixtures. Physical Review E, 2007, 76, 041802.	0.8	62
120	A Simple Relation for the Concentration Dependence of Osmotic Pressure and Depletion Thickness in Polymer Solutions. Macromolecular Theory and Simulations, 2007, 16, 531-540.	0.6	31
121	The critical endpoint in phase diagrams of attractive hard spheres. Physica A: Statistical Mechanics and Its Applications, 2007, 379, 52-58.	1.2	17
122	Phase behavior of a suspension of hard spherocylinders plus ideal polymer chains. European Physical Journal E, 2007, 23, 355-365.	0.7	25
123	Interactions and two-phase coexistence in nonionic micellar solutions as determined by static light scattering. Physical Chemistry Chemical Physics, 2006, 8, 869-876.	1.3	7
124	How depletion affects sphere motion through solutions containing macromolecules. Europhysics Letters, 2006, 75, 929-935.	0.7	56
125	Critical Endpoint and Analytical Phase Diagram of Attractive Hard-Core Yukawa Spheres. Journal of Physical Chemistry B, 2006, 110, 20540-20545.	1.2	35
126	Depletion Interaction Mediated by a Polydisperse Polymer Studied with Total Internal Reflection Microscopy. Langmuir, 2006, 22, 9121-9128.	1.6	35

#	Article	IF	CITATIONS
127	Spinodal decomposition in a food colloid–biopolymer mixture: evidence for a linear regime. Journal of Physics Condensed Matter, 2006, 18, L339-L346.	0.7	31
128	Phase behaviour of charged colloidal sphere dispersions with added polymer chains. Journal of Physics Condensed Matter, 2005, 17, 7783-7803.	0.7	40
129	Polymer depletion-induced slip near an interface. Journal of Physics Condensed Matter, 2005, 17, L9-L14.	0.7	44
130	5 Structure of concentrated colloidal dispersions. Fundamentals of Interface and Colloid Science, 2005, 4, 5.1-5.103.	0.1	7
131	Concentration and Solvency Effects on the Pair Interaction between Colloidal Particles in a Solution of Nonadsorbing Polymer. Macromolecules, 2004, 37, 8764-8772.	2.2	30
132	Concentration and Solvency Effects on the Excess Amount and Surface Free Energy of a Colloidal Particle in a Solution of Nonadsorbing Polymer. Macromolecules, 2004, 37, 8754-8763.	2.2	11
133	Segment-sphere size ratio influence on the stability of a polymer-colloid mixture. European Physical Journal E, 2003, 10, 123-128.	0.7	22
134	Approximate solutions to the Poisson–Boltzmann equation in spherical and cylindrical geometry. Journal of Colloid and Interface Science, 2003, 258, 45-49.	5.0	49
135	Depletion-induced phase separation in colloid–polymer mixtures. Advances in Colloid and Interface Science, 2003, 103, 1-31.	7.0	318
136	Substructure of bovine casein micelles by small-angle X-ray and neutron scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 213, 275-284.	2.3	174
137	Pair interaction and phase separation in mixtures of colloids and excluded volume polymers. Physical Chemistry Chemical Physics, 2003, 5, 3707.	1.3	40
138	On the Long-Range Attraction between Proteins Due to Nonadsorbing Polysaccharide. Biomacromolecules, 2003, 4, 28-31.	2.6	14
139	Morphology and Kinetics of Phase Separating Transparent Xanthanâ^'Colloid Mixtures. Biomacromolecules, 2003, 4, 129-136.	2.6	44
140	Mean-Field Equation for the Depletion Thickness. Macromolecules, 2003, 36, 7857-7872.	2.2	102
141	Phase Stability of Concentrated Dairy Products. Journal of Dairy Science, 2003, 86, 764-769.	1.4	17
142	Interaction potential between two spheres mediated by excluded volume polymers. Physical Review E, 2002, 65, 060801.	0.8	25
143	Phase behaviour of mixtures of colloidal spheres and excluded-volume polymer chains. Journal of Physics Condensed Matter, 2002, 14, 7551-7561.	0.7	104
144	Physicochemical Study of κ- and β-Casein Dispersions and the Effect of Cross-Linking by Transglutaminase. Langmuir, 2002, 18, 4885-4891.	1.6	65

#	Article	IF	CITATIONS
145	Interfacial Tension of a Decomposed Biopolymer Mixture. Langmuir, 2002, 18, 2234-2238.	1.6	58
146	Stability of casein micelles in milk. Journal of Chemical Physics, 2002, 117, 1290-1295.	1.2	228
147	Electrosorption of Pectin onto Casein Micelles. Biomacromolecules, 2002, 3, 632-638.	2.6	151
148	Polymer Density around a Sphere. Macromolecules, 2002, 35, 3312-3313.	2.2	16
149	Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. International Dairy Journal, 2002, 12, 689-695.	1.5	130
150	Polymer Polydispersity Effect on Depletion Interaction between Colloidal Particles. Macromolecular Theory and Simulations, 2002, 11, 975-984.	0.6	37
151	Polymer-Mediated Interaction between a Plate and a Sphere. Macromolecules, 2001, 34, 4636-4641.	2.2	5
152	Excluded-volume polymer-induced depletion interaction between parallel flat plates. European Physical Journal E, 2001, 6, 129-132.	0.7	17
153	Effects of structural modifications on some physical characteristics of exopolysaccharides fromLactococcus lactis. Biopolymers, 2001, 59, 160-166.	1.2	71
154	Polysaccharide protein interactions. Food Hydrocolloids, 2001, 15, 555-563.	5.6	404
155	Small-angle neutron scattering of aggregated whey protein colloids with an exocellular polysaccharide. Journal of Applied Crystallography, 2000, 33, 540-543.	1.9	2
156	Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures. Journal of Applied Microbiology, 2000, 89, 116-122.	1.4	65
157	The effect of depolymerised guar gum on the stability of skim milk. Food Hydrocolloids, 2000, 14, 1-7.	5.6	73
158	Depletion-Induced Phase Separation of Aggregated Whey Protein Colloids by an Exocellular Polysaccharide. Langmuir, 2000, 16, 1497-1507.	1.6	133
159	Depletion interaction between spheres immersed in a solution of ideal polymer chains. Journal of Chemical Physics, 2000, 113, 10768-10775.	1.2	119
160	CASEIN MICELLES AND THEIR INTERACTION WITH EXOPOLYSACCHARIDES; TURBIDITY AND VISCOSITY. , 2000, , 196-202.		0
161	Viscoelastic Properties of an Exocellular Polysaccharide Produced by a Lactococcus lactis. Biomacromolecules, 2000, 1, 219-223.	2.6	19
162	Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties?. , 1999, , 357-365.		13

#	Article	IF	CITATIONS
163	Depletion interaction of casein micelles and an exocellular polysaccharide. Physical Review E, 1999, 60, 848-856.	0.8	74
164	Whey protein aggregates and their interaction with exo-polysaccharides. International Journal of Food Science and Technology, 1999, 34, 487-492.	1.3	20
165	Title is missing!. Antonie Van Leeuwenhoek, 1999, 76, 357-365.	0.7	105
166	Phase Separation, Creaming, and Network Formation of Oil-in-Water Emulsions Induced by an Exocellular Polysaccharide. Journal of Colloid and Interface Science, 1999, 218, 201-210.	5.0	65
167	Isolation and physical characterization of an exocellular polysaccharide. , 1999, 49, 1-9.		71
168	Concentration and shear-rate dependence of the viscosity of an exocellular polysaccharide. , 1999, 50, 641-646.		58
169	Phase behavior of casein micelles/exocellular polysaccharide mixtures: Experiment and theory. Journal of Chemical Physics, 1999, 110, 9296-9304.	1.2	54
170	Isolation and physical characterization of an exocellular polysaccharide. , 1999, 49, 1.		3
171	Effective Viscosity of Polymer Solutions: Relation to the Determination of the Depletion Thickness and Thickness of the Adsorbed Layer of Cellulose Derivatives. Journal of Colloid and Interface Science, 1998, 207, 309-316.	5.0	21
172	Transient Foaming Behavior of Aqueous Alcohol Solutions as Related to Their Dilational Surface Properties. Journal of Colloid and Interface Science, 1996, 179, 327-334.	5.0	50
173	Adsorption of Weak Polyelectrolytes on Amphoteric Oxide Surfaces. International Journal of Polymer Analysis and Characterization, 1995, 1, 315-328.	0.9	6