Xinhuai Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4357318/publications.pdf

Version: 2024-02-01

414303 331538 2,222 33 21 32 citations h-index g-index papers 34 34 34 2161 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Innervation of GnRH Neuron Distal Projections and Activation by Kisspeptin in a New GnRH-Cre Rat Model. Endocrinology, $2021,162,.$	1.4	14
2	Highly redundant neuropeptide volume co-transmission underlying episodic activation of the GnRH neuron dendron. ELife, $2021,10,10$	2.8	38
3	Indirect Suppression of Pulsatile LH Secretion by CRH Neurons in the Female Mouse. Endocrinology, 2021, 162, .	1.4	20
4	Direct inhibition of arcuate kisspeptin neurones by neuropeptide Y in the male and female mouse. Journal of Neuroendocrinology, 2020, 32, e12849.	1.2	24
5	Dynamics of GnRH Neuron Ionotropic GABA and Glutamate Synaptic Receptors Are Unchanged during Estrogen Positive and Negative Feedback in Female Mice. ENeuro, 2017, 4, ENEURO.0259-17.2017.	0.9	18
6	Kisspeptin Regulation of Neuronal Activity throughout the Central Nervous System. Endocrinology and Metabolism, 2016, 31, 193.	1.3	48
7	Novel role for anti-MÃ $\frac{1}{4}$ llerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nature Communications, 2016, 7, 10055.	5 . 8	284
8	Kisspeptin Regulation of Arcuate Neuron Excitability in Kisspeptin Receptor Knockout Mice. Endocrinology, 2015, 156, 1815-1827.	1.4	29
9	Electrical properties of kisspeptin neurons and their regulation of GnRH neurons. Frontiers in Neuroendocrinology, 2015, 36, 15-27.	2.5	51
10	RF9 Excitation of GnRH Neurons Is Dependent Upon Kiss1r in the Adult Male and Female Mouse. Endocrinology, 2014, 155, 4915-4924.	1.4	27
11	Dependence of fertility on kisspeptin–Gpr54 signaling at the GnRH neuron. Nature Communications, 2013, 4, 2492.	5 . 8	173
12	Dopamine Regulation of Gonadotropin-Releasing Hormone Neuron Excitability in Male and Female Mice. Endocrinology, 2013, 154, 340-350.	1.4	80
13	Burst Firing in Gonadotrophinâ€Releasing Hormone Neurones does not Require Ionotrophic <scp>GABA</scp> or Glutamate Receptor Activation. Journal of Neuroendocrinology, 2012, 24, 1476-1483.	1.2	15
14	Estrous Cycle- and Sex-Dependent Changes in Pre- and Postsynaptic GABABControl of GnRH Neuron Excitability. Endocrinology, 2011, 152, 4856-4864.	1.4	34
15	Gap Junctions between Neuronal Inputs But Not Gonadotropin-Releasing Hormone Neurons Control Estrous Cycles in the Mouse. Endocrinology, 2011, 152, 2290-2301.	1.4	41
16	Frequency-Dependent Recruitment of Fast Amino Acid and Slow Neuropeptide Neurotransmitter Release Controls Gonadotropin-Releasing Hormone Neuron Excitability. Journal of Neuroscience, 2011, 31, 2421-2430.	1.7	108
17	Glutamate regulation of GnRH neuron excitability. Brain Research, 2010, 1364, 35-43.	1.1	95
18	Neurobiological mechanisms underlying kisspeptin activation of gonadotropin-releasing hormone (GnRH) neurons at puberty. Molecular and Cellular Endocrinology, 2010, 324, 45-50.	1.6	104

#	Article	IF	CITATIONS
19	Leptin Indirectly Regulates Gonadotropin-Releasing Hormone Neuronal Function. Endocrinology, 2009, 150, 2805-2812.	1.4	324
20	Regulation of Cholinergic Phenotype in Developing Neurons. Journal of Neurophysiology, 2008, 99, 2443-2455.	0.9	18
21	Kisspeptin Excites Gonadotropin-Releasing Hormone Neurons through a Phospholipase C/Calcium-Dependent Pathway Regulating Multiple Ion Channels. Endocrinology, 2008, 149, 4605-4614.	1.4	231
22	Small-Conductance Calcium-Activated Potassium Channels Control Excitability and Firing Dynamics in Gonadotropin-Releasing Hormone (GnRH) Neurons. Endocrinology, 2008, 149, 3598-3604.	1.4	59
23	Prolactin Regulation of Gonadotropin-Releasing Hormone Neurons to Suppress Luteinizing Hormone Secretion in Mice. Endocrinology, 2007, 148, 4344-4351.	1.4	122
24	Hyperthermia decreases GABAergic synaptic transmission in hippocampal neurons of immature rats. Neurobiology of Disease, 2007, 27, 320-327.	2.1	30
25	GABAB Receptor-Activation Inhibits GABAergic Synaptic Transmission in Parvocellular Neurones of Rat Hypothalamic Paraventricular Nucleus. Journal of Neuroendocrinology, 2006, 18, 177-186.	1.2	11
26	NMDA receptors regulate developmental gap junction uncoupling via CREB signaling. Nature Neuroscience, 2005, 8, 1720-1726.	7.1	92
27	Suppression of potassium channels elicits calcium-dependent plateau potentials in suprachiasmatic neurons of the rat. Brain Research, 2005, 1036, 50-59.	1.1	10
28	Hippocampal Kindling and GABAB Receptor Functions. , 2005, , 81-90.		2
29	Identified spinal motoneurons of young rats possess nicotinic acetylcholine receptors of the heteromeric family. European Journal of Neuroscience, 2004, 20, 2591-2597.	1.2	13
30	Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells. Brain Research, 2004, 1023, 185-192.	1.1	36
31	Partial hippocampal kindling increases GABAB receptor-mediated postsynaptic currents in CA1 pyramidal cells. Epilepsy Research, 2003, 57, 33-47.	0.8	19
32	Presence of functional vasopressin receptors in spinal ventral horn neurons of young rats: a morphological and electrophysiological study. European Journal of Neuroscience, 2003, 17, 1833-1846.	1.2	32
33	Substance P post-synaptically potentiates glutamate-induced currents in dorsal vagal neurons. Brain Research, 1998, 804, 95-104.	1.1	20