
Xinhuai Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4357318/publications.pdf Version: 2024-02-01

XINHIIAI LIII

#	Article	IF	CITATIONS
1	Leptin Indirectly Regulates Gonadotropin-Releasing Hormone Neuronal Function. Endocrinology, 2009, 150, 2805-2812.	2.8	324
2	Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nature Communications, 2016, 7, 10055.	12.8	284
3	Kisspeptin Excites Gonadotropin-Releasing Hormone Neurons through a Phospholipase C/Calcium-Dependent Pathway Regulating Multiple Ion Channels. Endocrinology, 2008, 149, 4605-4614.	2.8	231
4	Dependence of fertility on kisspeptin–Gpr54 signaling at the GnRH neuron. Nature Communications, 2013, 4, 2492.	12.8	173
5	Prolactin Regulation of Gonadotropin-Releasing Hormone Neurons to Suppress Luteinizing Hormone Secretion in Mice. Endocrinology, 2007, 148, 4344-4351.	2.8	122
6	Frequency-Dependent Recruitment of Fast Amino Acid and Slow Neuropeptide Neurotransmitter Release Controls Gonadotropin-Releasing Hormone Neuron Excitability. Journal of Neuroscience, 2011, 31, 2421-2430.	3.6	108
7	Neurobiological mechanisms underlying kisspeptin activation of gonadotropin-releasing hormone (GnRH) neurons at puberty. Molecular and Cellular Endocrinology, 2010, 324, 45-50.	3.2	104
8	Glutamate regulation of GnRH neuron excitability. Brain Research, 2010, 1364, 35-43.	2.2	95
9	NMDA receptors regulate developmental gap junction uncoupling via CREB signaling. Nature Neuroscience, 2005, 8, 1720-1726.	14.8	92
10	Dopamine Regulation of Gonadotropin-Releasing Hormone Neuron Excitability in Male and Female Mice. Endocrinology, 2013, 154, 340-350.	2.8	80
11	Small-Conductance Calcium-Activated Potassium Channels Control Excitability and Firing Dynamics in Gonadotropin-Releasing Hormone (GnRH) Neurons. Endocrinology, 2008, 149, 3598-3604.	2.8	59
12	Electrical properties of kisspeptin neurons and their regulation of GnRH neurons. Frontiers in Neuroendocrinology, 2015, 36, 15-27.	5.2	51
13	Kisspeptin Regulation of Neuronal Activity throughout the Central Nervous System. Endocrinology and Metabolism, 2016, 31, 193.	3.0	48
14	Gap Junctions between Neuronal Inputs But Not Gonadotropin-Releasing Hormone Neurons Control Estrous Cycles in the Mouse. Endocrinology, 2011, 152, 2290-2301.	2.8	41
15	Highly redundant neuropeptide volume co-transmission underlying episodic activation of the GnRH neuron dendron. ELife, 2021, 10, .	6.0	38
16	Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells. Brain Research, 2004, 1023, 185-192.	2.2	36
17	Estrous Cycle- and Sex-Dependent Changes in Pre- and Postsynaptic GABABControl of GnRH Neuron Excitability. Endocrinology, 2011, 152, 4856-4864.	2.8	34
18	Presence of functional vasopressin receptors in spinal ventral horn neurons of young rats: a morphological and electrophysiological study. European Journal of Neuroscience, 2003, 17, 1833-1846.	2.6	32

Xinhuai Liu

#	Article	IF	CITATIONS
19	Hyperthermia decreases GABAergic synaptic transmission in hippocampal neurons of immature rats. Neurobiology of Disease, 2007, 27, 320-327.	4.4	30
20	Kisspeptin Regulation of Arcuate Neuron Excitability in Kisspeptin Receptor Knockout Mice. Endocrinology, 2015, 156, 1815-1827.	2.8	29
21	RF9 Excitation of GnRH Neurons Is Dependent Upon Kiss1r in the Adult Male and Female Mouse. Endocrinology, 2014, 155, 4915-4924.	2.8	27
22	Direct inhibition of arcuate kisspeptin neurones by neuropeptide Y in the male and female mouse. Journal of Neuroendocrinology, 2020, 32, e12849.	2.6	24
23	Substance P post-synaptically potentiates glutamate-induced currents in dorsal vagal neurons. Brain Research, 1998, 804, 95-104.	2.2	20
24	Indirect Suppression of Pulsatile LH Secretion by CRH Neurons in the Female Mouse. Endocrinology, 2021, 162, .	2.8	20
25	Partial hippocampal kindling increases GABAB receptor-mediated postsynaptic currents in CA1 pyramidal cells. Epilepsy Research, 2003, 57, 33-47.	1.6	19
26	Regulation of Cholinergic Phenotype in Developing Neurons. Journal of Neurophysiology, 2008, 99, 2443-2455.	1.8	18
27	Dynamics of GnRH Neuron Ionotropic GABA and Glutamate Synaptic Receptors Are Unchanged during Estrogen Positive and Negative Feedback in Female Mice. ENeuro, 2017, 4, ENEURO.0259-17.2017.	1.9	18
28	Burst Firing in Gonadotrophinâ€Releasing Hormone Neurones does not Require Ionotrophic <scp>GABA</scp> or Glutamate Receptor Activation. Journal of Neuroendocrinology, 2012, 24, 1476-1483.	2.6	15
29	Innervation of GnRH Neuron Distal Projections and Activation by Kisspeptin in a New GnRH-Cre Rat Model. Endocrinology, 2021, 162, .	2.8	14
30	Identified spinal motoneurons of young rats possess nicotinic acetylcholine receptors of the heteromeric family. European Journal of Neuroscience, 2004, 20, 2591-2597.	2.6	13
31	GABAB Receptor-Activation Inhibits GABAergic Synaptic Transmission in Parvocellular Neurones of Rat Hypothalamic Paraventricular Nucleus. Journal of Neuroendocrinology, 2006, 18, 177-186.	2.6	11
32	Suppression of potassium channels elicits calcium-dependent plateau potentials in suprachiasmatic neurons of the rat. Brain Research, 2005, 1036, 50-59.	2.2	10
33	Hippocampal Kindling and GABAB Receptor Functions. , 2005, , 81-90.		2