
Xiang' Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4357275/publications.pdf Version: 2024-02-01

XIANC' MANC

#	Article	IF	CITATIONS
1	Design of strontium stannate perovskites with different fine structures for the oxidative coupling of methane (OCM): Interpreting the functions of surface oxygen anions, basic sites and the structure–reactivity relationship. Journal of Catalysis, 2022, 408, 465-477.	3.1	22
2	Study on the monolayer dispersion behavior of SnO ₂ on ZSM-5 for NO _{<i>x</i>} -SCR by C ₃ H ₆ : the remarkable promotional effects of air plasma treatment. Physical Chemistry Chemical Physics, 2022, 24, 4212-4225.	1.3	4
3	Niobium oxide promoted with alkali metal nitrates for soot particulate combustion: elucidating the vital role of active surface nitrate groups. Physical Chemistry Chemical Physics, 2022, 24, 3250-3258.	1.3	8
4	Interface-dependent activity and selectivity for CO2 hydrogenation on Ni/CeO2 and Ni/CeO.9Sn0.1Ox. Fuel, 2022, 316, 123191.	3.4	12
5	Elucidating Ru Distribution State of Ruâ€Promoted Pr ₂ Sn ₂ O ₇ Pyrochlore and its Effect on the Catalytic Performance for Toluene Deep Oxidation. ChemCatChem, 2022, 14, .	1.8	4
6	Remarkable Pd/SnO2 nano-rod catalysts with ultra-low Pd content for toluene combustion: Clarifying the effect of SnO2 morphology on the valence states of the supported Pd species and the vital role of Pd0. Applied Catalysis A: General, 2022, 636, 118576.	2.2	6
7	Using XRD extrapolation method to design Ce-Cu-O solid solution catalysts for methanol steam reforming to produce H2: The effect of CuO lattice capacity on the reaction performance. Catalysis Today, 2022, 402, 228-240.	2.2	19
8	The critical roles of hydrophobicity, surface Ru ⁰ and active O ₂ ^{â~} /O ₂ ^{2â~} sites on toluene combustion on Ru/ZSM-5 with varied Si/Al ratios. Physical Chemistry Chemical Physics, 2022, 24, 14209-14218.	1.3	11
9	Uncovering the Nature of Band Gap Engineering of Adsorption Energy by Elucidating an Adsorbate Bonding Mechanism on Two-Dimensional TiO ₂ (110). Journal of Physical Chemistry C, 2022, 126, 10677-10685.	1.5	3
10	Constructing Y ₂ B ₂ O ₇ (B = Ti, Sn, Zr, Ce) Compounds to Disclose the Effect of Surface Acidity–Basicity on Product Selectivity for Oxidative Coupling of Methane (OCM). Inorganic Chemistry, 2022, 61, 11419-11431.	1.9	7
11	The enhancement effects of BaX2 (X = F, Cl, Br) on SnO2-based catalysts for the oxidative coupling of methane (OCM). Catalysis Today, 2021, 364, 35-45.	2.2	9
12	Stable CuO/La2Sn2O7 catalysts for soot combustion: Study on the monolayer dispersion behavior of CuO over a La2Sn2O7 pyrochlore support. Chinese Journal of Catalysis, 2021, 42, 396-408.	6.9	24
13	Cu1â^'xMgxAl3 spinel solid solution as a sustained release catalyst: One-pot green synthesis and catalytic performance in methanol steam reforming. Fuel, 2021, 284, 119041.	3.4	18
14	Insights into CO2 methanation mechanism on cubic ZrO2 supported Ni catalyst via a combination of experiments and DFT calculations. Fuel, 2021, 283, 118867.	3.4	47
15	Metallic Ag Confined on SnO ₂ Surface for Soot Combustion: the Influence of Ag Distribution and Dispersion on the Reactivity. ChemCatChem, 2021, 13, 2222-2233.	1.8	7
16	Unraveling the Intrinsic Reasons Promoting the Reactivity of ZnAl2O4ÂSpinel by Fe and Co for CO Oxidation. Catalysis Surveys From Asia, 2021, 25, 180-191.	1.0	5
17	Band Gap as a Novel Descriptor for the Reactivity of 2D Titanium Dioxide and its Supported Pt Single Atom for Methane Activation. Journal of Physical Chemistry Letters, 2021, 12, 2484-2488.	2.1	8
18	Expounding the monolayer dispersion threshold effect of SnO2/Beta catalysts on the selective catalytic reduction of NOx (NOx-SCR) by C3H6. Molecular Catalysis, 2021, 504, 111464.	1.0	5

#	Article	IF	CITATIONS
19	Facile Cr ³⁺ -Doping Strategy Dramatically Promoting Ru/CeO ₂ for Low-Temperature CO ₂ Methanation: Unraveling the Roles of Surface Oxygen Vacancies and Hydroxyl Groups. ACS Catalysis, 2021, 11, 5762-5775.	5.5	105
20	Tuning Ni3+ quantity of NiO via doping of cations with varied valence states: The key role of Ni3+ on the reactivity. Applied Surface Science, 2021, 550, 149316.	3.1	25
21	Superior 3DOM Y2Zr2O7 supports for Ni to fabricate highly active and selective catalysts for CO2 methanation. Fuel, 2021, 293, 120460.	3.4	11
22	Plasma assisted preparation of highly active NiAl2O4 catalysts for propane steam reforming. International Journal of Hydrogen Energy, 2021, 46, 24931-24941.	3.8	13
23	Ni/LaBO3 (B = Al, Cr, Fe) Catalysts for Steam Reforming of Methane (SRM): On the Interaction Between and LaBO3 Perovskites with Differed Fine Structures. Catalysis Surveys From Asia, 2021, 25, 424-436.	Ni 1.0	5
24	Promoting the surface active sites of defect BaSnO3 perovskite with BaBr2 for the oxidative coupling of methane. Catalysis Today, 2021, 374, 29-37.	2.2	9
25	Unraveling the Principles of Lattice Disorder Degree of Bi ₂ B ₂ O ₇ (B = Sn, Ti, Zr) Compounds on Activating Gas Phase O ₂ for Soot Combustion. ACS Catalysis, 2021, 11, 12112-12122.	5.5	25
26	Toward rational design of a novel hierarchical porous Cu-SSZ-13 catalyst with boosted low-temperature NO reduction performance. Journal of Catalysis, 2021, 401, 309-320.	3.1	30
27	Band-Gap Engineering: A New Tool for Tailoring the Activity of Semiconducting Oxide Catalysts for CO Oxidation. Journal of Physical Chemistry Letters, 2021, 12, 9188-9196.	2.1	13
28	Dissecting La2Ce2O7 catalyst to unravel the origin of the surface active sites devoting to its performance for oxidative coupling of methane (OCM). Catalysis Today, 2021, , .	2.2	8
29	Rutile RuO2 dispersion on rutile and anatase TiO2 supports: The effects of support crystalline phase structure on the dispersion behaviors of the supported metal oxides. Catalysis Today, 2020, 339, 220-232.	2.2	38
30	Tailoring La2Ce2O7 catalysts for low temperature oxidative coupling of methane by optimizing the preparation methods. Catalysis Today, 2020, 355, 518-528.	2.2	56
31	One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: Enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures. Journal of Hazardous Materials, 2020, 385, 121593.	6.5	87
32	The promotional effects of plasma treating on Ni/Y2Ti2O7 for steam reforming of methane (SRM): Elucidating the NiO-support interaction and the states of the surface oxygen anions. International Journal of Hydrogen Energy, 2020, 45, 4556-4569.	3.8	16
33	Regulating SnO2 surface by metal oxides possessing redox or acidic properties: The importance of active O2â^'/O22â^' and acid sites for toluene deep oxidation. Applied Catalysis A: General, 2020, 605, 117755.	2.2	15
34	NiO supported on Y ₂ Ti ₂ O ₇ pyrochlore for CO ₂ reforming of CH ₄ : insight into the monolayer dispersion threshold effect on coking resistance. Catalysis Science and Technology, 2020, 10, 8396-8409.	2.1	9
35	Study on the Structure–Reactivity Relationship of LnMn2O5 (Ln = La, Pr, Sm, Y) Mullite Catalysts for Soot Combustion. Chemistry Africa, 2020, 3, 695-701.	1.2	9
36	Tin-Containing Layered Double Hydroxides. Petroleum Chemistry, 2020, 60, 444-450.	0.4	6

#	Article	IF	CITATIONS
37	A2B2O7 pyrochlore compounds: A category of potential materials for clean energy and environment protection catalysis. Journal of Rare Earths, 2020, 38, 840-849.	2.5	62
38	The distributions of alkaline earth metal oxides and their promotional effects on Ni/CeO2 for CO2 methanation. Journal of CO2 Utilization, 2020, 38, 113-124.	3.3	75
39	The promotional effects of CsNO3 on Sn-Co-O solid solution for soot combustion: Using XRD extrapolation method to elucidate the structure-reactivity relationship. Applied Surface Science, 2020, 509, 145363.	3.1	15
40	Tailoring Active O ₂ [–] and O ₂ ^{2–} Anions on a ZnO Surface with the Addition of Different Alkali Metals Probed by CO Oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 9382-9392.	1.8	13
41	Influence of Cesium Loading on Oxidative Coupling of Methane (OCM) over Cs/SnO2 Catalysts. Chemistry Africa, 2020, 3, 687-694.	1.2	2
42	Investigation of lattice capacity effect on Cu2+-doped SnO2 solid solution catalysts to promote reaction performance toward NO -SCR with NH3. Chinese Journal of Catalysis, 2020, 41, 877-888.	6.9	29
43	Probing the reactivity and structure relationship of Ln2Sn2O7 (Ln=La, Pr, Sm and Y) pyrochlore catalysts for CO oxidation. Catalysis Today, 2019, 327, 168-176.	2.2	40
44	Identifying Surface Active Sites of SnO ₂ : Roles of Surface O ₂ [–] , O ₂ ^{2–} Anions and Acidic Species Played for Toluene Deep Oxidation. Industrial & Engineering Chemistry Research, 2019, 58, 18569-18581.	1.8	32
45	Catalysts in Coronas: A Surface Spatial Confinement Strategy for High-Performance Catalysts in Methane Dry Reforming. ACS Catalysis, 2019, 9, 9072-9080.	5.5	121
46	Tuning SnO2 surface with CuO for soot particulate combustion: The effect of monolayer dispersion capacity on reaction performance. Chinese Journal of Catalysis, 2019, 40, 905-916.	6.9	20
47	Active and stable Pt-Ceria nanowires@silica shell catalyst: Design, formation mechanism and total oxidation of CO and toluene. Applied Catalysis B: Environmental, 2019, 256, 117807.	10.8	57
48	Deactivation feature of Cu/SiO2 catalyst in methanol decomposition. International Journal of Hydrogen Energy, 2019, 44, 16667-16674.	3.8	37
49	New insights into CO2 methanation mechanisms on Ni/MgO catalysts by DFT calculations: Elucidating Ni and MgO roles and support effects. Journal of CO2 Utilization, 2019, 33, 55-63.	3.3	71
50	SnO2/Al2O3 catalysts for selective reduction of NOx by propylene: On the promotional effects of plasma treatment in air atmosphere. Catalysis Today, 2019, 337, 171-181.	2.2	13
51	Ni/La ₂ O ₃ Catalysts for Dry Reforming of Methane: Insights into the Factors Improving the Catalytic Performance. ChemCatChem, 2019, 11, 2887-2899.	1.8	37
52	Exploring the Nanosize Effect of Mordenite Zeolites on Their Performance in the Removal of NO _{<i>x</i>} . Industrial & Engineering Chemistry Research, 2019, 58, 8625-8635.	1.8	18
53	Effect of rare earth element (Ln = La, Pr, Sm, and Y) on physicochemical properties of the Ni/Ln2Ti2O7 catalysts for the steam reforming of methane. Molecular Catalysis, 2019, 468, 130-138.	1.0	24
54	Constructing La ₂ B ₂ O ₇ (B = Ti, Zr, Ce) Compounds with Three Typical Crystalline Phases for the Oxidative Coupling of Methane: The Effect of Phase Structures, Superoxide Anions, and Alkalinity on the Reactivity. ACS Catalysis, 2019, 9, 4030-4045.	5.5	141

#	Article	IF	CITATIONS
55	Ln2Zr2O7 compounds (Ln = La, Pr, Sm, Y) with varied rare earth A sites for low temperature oxidative coupling of methane. Chinese Chemical Letters, 2019, 30, 1141-1146.	4.8	16
56	The Influence of RuO ₂ Distribution and Dispersion on the Reactivity of RuO ₂ â^`SnO ₂ Composite Oxide Catalysts Probed by CO Oxidation. ChemCatChem, 2019, 11, 2473-2483.	1.8	13
57	Optimizing the Reaction Performance of La ₂ Ce ₂ O ₇ â€Based Catalysts for Oxidative Coupling of Methane (OCM) at Lower Temperature by Lattice Doping with Ca Cations. European Journal of Inorganic Chemistry, 2019, 2019, 183-194.	1.0	49
58	LaNiO3 nanocube embedded in mesoporous silica for dry reforming of methane with enhanced coking resistance. Microporous and Mesoporous Materials, 2018, 266, 189-197.	2.2	44
59	In Situ Embedded Pseudo Pd–Sn Solid Solution in Micropores Silica with Remarkable Catalytic Performance for CO and Propane Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 9220-9224.	4.0	42
60	Methane dry reforming over Ni/Mg-Al-O: On the significant promotional effects of rare earth Ce and Nd metal oxides. Journal of CO2 Utilization, 2018, 25, 242-253.	3.3	47
61	Ni/Y2B2O7 (B Ti, Sn, Zr and Ce) catalysts for methane steam reforming: On the effects of B site replacement. International Journal of Hydrogen Energy, 2018, 43, 8298-8312.	3.8	34
62	SnO2 promoted by alkali metal oxides for soot combustion: The effects of surface oxygen mobility and abundance on the activity. Applied Surface Science, 2018, 435, 406-414.	3.1	61
63	SnO ₂ Based Catalysts with Lowâ€Temperature Performance for Oxidative Coupling of Methane: Insight into the Promotional Effects of Alkaliâ€Metal Oxides. European Journal of Inorganic Chemistry, 2018, 2018, 1787-1799.	1.0	26
64	Developing reactive catalysts for low temperature oxidative coupling of methane: On the factors deciding the reaction performance of Ln 2 Ce 2 O 7 with different rare earth A sites. Applied Catalysis A: General, 2018, 552, 117-128.	2.2	74
65	Nickel nanoparticles embedded in mesopores of AlSBA-15 with a perfect peasecod-like structure: A catalyst with superior sintering resistance and hydrothermal stability for methane dry reforming. Applied Catalysis B: Environmental, 2018, 224, 488-499.	10.8	115
66	Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite. Chemical Engineering Journal, 2018, 334, 10-18.	6.6	111
67	Strategic use of CuAlO ₂ as a sustained release catalyst for production of hydrogen from methanol steam reforming. Chemical Communications, 2018, 54, 12242-12245.	2.2	27
68	Cuâ^'Niâ^'Al Spinel Oxide as an Efficient Durable Catalyst for Methanol Steam Reforming. ChemCatChem, 2018, 10, 5698-5706.	1.8	37
69	Tuning SnO ₂ Surface Area for Catalytic Toluene Deep Oxidation: On the Inherent Factors Determining the Reactivity. Industrial & Engineering Chemistry Research, 2018, 57, 14052-14063.	1.8	43
70	Design and Synthesis of Cu/ZSM-5 Catalyst via a Facile One-Pot Dual-Template Strategy with Controllable Cu Content for Removal of NO _{<i>x</i>} . Industrial & Engineering Chemistry Research, 2018, 57, 14967-14976.	1.8	35
71	Three-dimensionally ordered macroporous SnO2-based solid solution catalysts for effective soot oxidation. Chinese Journal of Catalysis, 2018, 39, 1683-1694.	6.9	25
72	Confined Ultrathin Pdâ€Ce Nanowires with Outstanding Moisture and SO ₂ Tolerance in Methane Combustion. Angewandte Chemie - International Edition, 2018, 57, 8953-8957.	7.2	124

#	Article	IF	CITATIONS
73	The influence on the structural and redox property of CuO by using different precursors and precipitants for catalytic soot combustion. Applied Surface Science, 2018, 453, 204-213.	3.1	33
74	Tetragonal Rutile SnO ₂ Solid Solutions for NO _{<i>x</i>} -SCR by NH ₃ : Tailoring the Surface Mobile Oxygen and Acidic Sites by Lattice Doping. Industrial & Engineering Chemistry Research, 2018, 57, 10315-10326.	1.8	27
75	Engineering Ni ³⁺ Cations in NiO Lattice at the Atomic Level by Li ⁺ Doping: The Roles of Ni ³⁺ and Oxygen Species for CO Oxidation. ACS Catalysis, 2018, 8, 8033-8045.	5.5	109
76	Design of Ni-ZrO2@SiO2 catalyst with ultra-high sintering and coking resistance for dry reforming of methane to prepare syngas. Journal of CO2 Utilization, 2018, 27, 297-307.	3.3	115
77	Ag supported on meso-structured SiO2 with different morphologies for CO oxidation: On the inherent factors influencing the activity of Ag catalysts. Microporous and Mesoporous Materials, 2017, 242, 90-98.	2.2	23
78	Synthesis of a Highly Active and Stable Nickelâ€Embedded Alumina Catalyst for Methane Dry Reforming: On the Confinement Effects of Alumina Shells for Nickel Nanoparticles. ChemCatChem, 2017, 9, 3563-3571.	1.8	37
79	Ni Supported on LaFeO3 Perovskites for Methane Steam Reforming: On the Promotional Effects of Plasma Treatment in H2–Ar Atmosphere. Topics in Catalysis, 2017, 60, 831-842.	1.3	24
80	SnO 2 nano-rods promoted by In, Cr and Al cations for toluene total oxidation: The impact of oxygen property and surface acidity on the catalytic activity. Applied Surface Science, 2017, 420, 186-195.	3.1	43
81	Modifying the Surface of γâ€Al ₂ O ₃ with Y ₂ Sn ₂ O ₇ Pyrochlore: Monolayer Dispersion Behaviour of Composite Oxides. ChemPhysChem, 2017, 18, 1533-1540.	1.0	8
82	Ni/Ln ₂ Zr ₂ O ₇ (Ln = La, Pr, Sm and Y) catalysts for methane steam reforming: the effects of A site replacement. Catalysis Science and Technology, 2017, 7, 2729-2743.	2.1	67
83	Temperature dependence of Cu–Al spinel formation and its catalytic performance in methanol steam reforming. Catalysis Science and Technology, 2017, 7, 5069-5078.	2.1	38
84	Mesoporous high surface area NiO synthesized with soft templates: Remarkable for catalytic CH4 deep oxidation. Molecular Catalysis, 2017, 441, 81-91.	1.0	81
85	Oneâ€Pot Facile Fabrication of Multiple Nickel Nanoparticles Confined in Microporous Silica Giving a Multipleâ€Cores@Shell Structure as a Highly Efficient Catalyst for Methane Dry Reforming. ChemCatChem, 2017, 9, 127-136.	1.8	62
86	Mesoporous Highâ€5urfaceâ€Area Copper–Tin Mixedâ€Oxide Nanorods: Remarkable for Carbon Monoxide Oxidation. ChemCatChem, 2016, 8, 2329-2334.	1.8	10
87	Dry reforming of methane on active and coke resistant Ni/Y 2 Zr 2 O 7 catalysts treated by dielectric barrier discharge plasma. Journal of Energy Chemistry, 2016, 25, 825-831.	7.1	39
88	Reshaping CuO on silica to generate a highly active Cu/SiO ₂ catalyst. Catalysis Science and Technology, 2016, 6, 6311-6319.	2.1	21
89	Kinetic modeling and transient DRIFTS–MS studies of CO2 methanation over Ru/Al2O3 catalysts. Journal of Catalysis, 2016, 343, 185-195.	3.1	180
90	H2 adsorption and dissociation on PdO(101) films supported on rutile TiO2 (110) facet: elucidating the support effect by DFT calculations. Journal of Molecular Modeling, 2016, 22, 204.	0.8	2

#	Article	IF	CITATIONS
91	SnO 2 -based solid solutions for CH 4 deep oxidation: Quantifying the lattice capacity of SnO 2 using an X-ray diffraction extrapolation method. Chinese Journal of Catalysis, 2016, 37, 1293-1302.	6.9	24
92	Modifying Hopcalite catalyst by SnO 2 addition: An effective way to improve its moisture tolerance and activity for low temperature CO oxidation. Applied Catalysis A: General, 2016, 525, 204-214.	2.2	40
93	Mesoporous Y ₂ Sn ₂ O ₇ pyrochlore with exposed (111) facets: an active and stable catalyst for CO oxidation. RSC Advances, 2016, 6, 71791-71799.	1.7	16
94	Treating Copper(II) Oxide Nanoflowers with Hydrogen Peroxide: A Novel and Facile Strategy To Prepare Highâ€Performance Copper(II) Oxide Nanosheets with Exposed (1 1 0) Facets. ChemCatChem, 2016, 8, 3714-3719.	1.8	13
95	O2 adsorption on MO2 (M = Ru, Ir, Sn) films supported on rutile TiO2(1 1 0) by DFT calculations: Probing the nature of metal oxide-support interaction. Journal of Colloid and Interface Science, 2016, 473, 100-111.	5.0	10
96	Highly active and stable Ni/Y2Zr2O7 catalysts for methane steam reforming: On the nature and effective preparation method of the pyrochlore support. International Journal of Hydrogen Energy, 2016, 41, 11141-11153.	3.8	42
97	Thermally stable ultra-small Pd nanoparticles encapsulated by silica: elucidating the factors determining the inherent activity of noble metal catalysts. Catalysis Science and Technology, 2016, 6, 5405-5414.	2.1	27
98	Elucidating the promotional effects of niobia on SnO ₂ for CO oxidation: developing an XRD extrapolation method to measure the lattice capacity of solid solutions. Catalysis Science and Technology, 2016, 6, 5280-5291.	2.1	41
99	Improving water tolerance of Co 3 O 4 by SnO 2 addition for CO oxidation. Applied Surface Science, 2015, 355, 1254-1260.	3.1	67
100	Methane Dry Reforming over Cokeâ€Resistant Mesoporous Niâ€Al ₂ O ₃ Catalysts Prepared by Evaporationâ€Induced Selfâ€Assembly Method. ChemCatChem, 2015, 7, 3753-3762.	1.8	57
101	Facile preparation of mesoporous Cu–Sn solid solutions as active catalysts for CO oxidation. RSC Advances, 2015, 5, 25755-25764.	1.7	36
102	Sn-MFI as active, sulphur and water tolerant catalysts for selective reduction of NO _x . RSC Advances, 2015, 5, 42789-42797.	1.7	24
103	High surface area La ₂ Sn ₂ O ₇ pyrochlore as a novel, active and stable support for Pd for CO oxidation. Catalysis Science and Technology, 2015, 5, 2270-2281.	2.1	64
104	Methane dry reforming on Ni/La2Zr2O7 treated by plasma in different atmospheres. Journal of Energy Chemistry, 2015, 24, 416-424.	7.1	42
105	Ni–Co/Al ₂ O ₃ Bimetallic Catalysts for CH ₄ Steam Reforming: Elucidating the Role of Co for Improving Coke Resistance. ChemCatChem, 2014, 6, 3377-3386.	1.8	93
106	Nickel‣upported on La ₂ Sn ₂ O ₇ and La ₂ Zr ₂ O ₇ Pyrochlores for Methane Steam Reforming: Insight into the Difference between Tin and Zirconium in the B Site of the Compound. ChemCatChem, 2014, 6, 2266 2276	1.8	70
107	3366-3376. Tuning Al ₂ O ₃ Surface with SnO ₂ to Prepare Improved Supports for Pd for CO Oxidation. ChemCatChem, 2014, 6, 1604-1611.	1.8	41
108	Tin Modification on Ni/Al ₂ O ₃ : Designing Potent Cokeâ€Resistant Catalysts for the Dry Reforming of Methane. ChemCatChem, 2014, 6, 2095-2104.	1.8	63

#	Article	IF	CITATIONS
109	SnO ₂ nano-rods with superior CO oxidation performance. Journal of Materials Chemistry A, 2014, 2, 5616-5619.	5.2	36
110	A novel supported Cu catalyst with highly dispersed copper nanoparticles and its remarkable catalytic performance in methanol decomposition. RSC Advances, 2014, 4, 52008-52011.	1.7	9
111	Promotional effects of samarium on Co3O4 spinel for CO and CH4 oxidation. Journal of Rare Earths, 2014, 32, 159-169.	2.5	37
112	CO oxidation on Ta-Modified SnO2 solid solution catalysts. Solid State Sciences, 2013, 20, 103-109.	1.5	17
113	Effects of La, Ce, and Y Oxides on SnO ₂ Catalysts for CO and CH ₄ Oxidation. ChemCatChem, 2013, 5, 2025-2036.	1.8	65
114	Study on ceria-modified SnO2 for CO and CH4 oxidation. Journal of Rare Earths, 2012, 30, 1013-1019.	2.5	30
115	Study on RuO ₂ /SnO ₂ : Novel and Active Catalysts for CO and CH ₄ Oxidation. ChemCatChem, 2012, 4, 1122-1132.	1.8	54
116	Designing the activity/selectivity of surface acidic, basic and redox active sites in the supported KO?VO/AlO catalytic system. Catalysis Today, 2004, 96, 211-222.	2.2	49
117	CH4 deep oxidation over active and thermally stable catalysts based on Sn–Cr composite oxide. New Journal of Chemistry, 2001, 25, 1621-1626.	1.4	11
118	Mechanism of the Selective Reduction of NOx over Co/MFI: Comparison with Fe/MFI. Journal of Catalysis, 2001, 197, 281-291.	3.1	90
119	Total oxidation of CH4 on Sn-Cr composite oxide catalysts. Applied Catalysis B: Environmental, 2001, 35, 85-94.	10.8	61
120	Catalytic reduction of NOx by hydrocarbons over Co/ZSM-5 catalysts prepared with different methods. Applied Catalysis B: Environmental, 2000, 26, L227-L239.	10.8	128