List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/435714/publications.pdf Version: 2024-02-01

ΙΟΗΝ ΒΛΙΙΑΤΟ

#	Article	IF	CITATIONS
1	Carbon Nanotube Doped Polyaniline. Advanced Materials, 2002, 14, 1480-1483.	21.0	641
2	Infrared fibers. Advances in Optics and Photonics, 2015, 7, 379.	25.5	274
3	Silicon optical Fiber. Optics Express, 2008, 16, 18675.	3.4	255
4	Sapphire-derived all-glass optical fibres. Nature Photonics, 2012, 6, 627-633.	31.4	160
5	Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications. Applied Optics, 1995, 34, 6848.	2.1	158
6	Optical Characterization of Infrared Emitting Rare-Earth-Doped Fluoride Nanocrystals and Their Transparent Nanocomposites. Chemistry of Materials, 2007, 19, 1523-1528.	6.7	148
7	Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosensors and Bioelectronics, 2011, 28, 333-338.	10.1	133
8	Materials for optical fiber lasers: A review. Applied Physics Reviews, 2018, 5, .	11.3	131
9	Glass-clad single-crystal germanium optical fiber. Optics Express, 2009, 17, 8029.	3.4	130
10	Photonic Crystal Composites with Reversible High-Frequency Stop Band Shifts. Advanced Materials, 2003, 15, 685-689.	21.0	129
11	Image transport through a disordered optical fibre mediated by transverse Anderson localization. Nature Communications, 2014, 5, 3362.	12.8	118
12	Photonic Bandgap Composites. Advanced Materials, 2001, 13, 1898.	21.0	106
13	Advancements in semiconductor core optical fiber. Optical Fiber Technology, 2010, 16, 399-408.	2.7	102
14	Rethinking Optical Fiber: New Demands, Old Glasses. Journal of the American Ceramic Society, 2013, 96, 2675-2692.	3.8	99
15	Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres. Nature Communications, 2016, 7, 13265.	12.8	91
16	CO ₂ Laserâ€Induced Directional Recrystallization to Produce Single Crystal Siliconâ€Core Optical Fibers with Low Loss. Advanced Optical Materials, 2016, 4, 1004-1008.	7.3	87
17	On the fabrication of all-glass optical fibers from crystals. Journal of Applied Physics, 2009, 105, .	2.5	86
18	Binary III-V semiconductor core optical fiber. Optics Express, 2010, 18, 4972.	3.4	86

#	Article	IF	CITATIONS
19	Diode-pumped 200Âμm diameter core, gain-guided, index-antiguided single mode fiber laser. Applied Physics B: Lasers and Optics, 2008, 90, 369-372.	2.2	85
20	Random lasing in an Anderson localizing optical fiber. Light: Science and Applications, 2017, 6, e17041.	16.6	83
21	Intense and Energetic Atmospheric Pressure Plasma Jet Arrays. Plasma Processes and Polymers, 2012, 9, 253-260.	3.0	81
22	Transverse Anderson localization in a disordered glass optical fiber. Optical Materials Express, 2012, 2, 1496.	3.0	80
23	Brillouin spectroscopy of YAG-derived optical fibers. Optics Express, 2010, 18, 10055.	3.4	75
24	Synthesis, Processing, and Properties of Submicrometerâ€Grained Highly Transparent Yttria Ceramics. Journal of the American Ceramic Society, 2010, 93, 1320-1325.	3.8	74
25	Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber. Applied Physics Letters, 2006, 89, 251101.	3.3	69
26	Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers. Optics Express, 2010, 18, 16826.	3.4	65
27	Perspective: Molten core optical fiber fabrication—A route to new materials and applications. APL Photonics, 2018, 3, 120903.	5.7	64
28	Hydrothermal Growth and Thermal Property Characterization of ThO ₂ Single Crystals. Crystal Growth and Design, 2010, 10, 2146-2151.	3.0	59
29	Nanoparticle doping for high power fiber lasers at eye-safer wavelengths. Optics Express, 2017, 25, 13903.	3.4	59
30	Optical properties of perfluorocyclobutyl polymers. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 1838.	2.1	55
31	Submicrometer Grain‧ized Transparent Erbiumâ€Doped Scandia Ceramics. Journal of the American Ceramic Society, 2010, 93, 3657-3662.	3.8	54
32	Silicon-core glass fibres as microwire radial-junction solar cells. Scientific Reports, 2014, 4, 6283.	3.3	52
33	Optical limiting in SrBi2Ta2O9 and PbZrxTi1â^'xO3 ferroelectric thin films. Applied Physics Letters, 2002, 80, 3394-3396.	3.3	51
34	All-optical modulation using two-photon absorption in silicon core optical fibers. Optics Express, 2011, 19, 19078.	3.4	51
35	Tapered polysilicon core fibers for nonlinear photonics. Optics Letters, 2016, 41, 1360.	3.3	51
36	Silica-clad crystalline germanium core optical fibers. Optics Letters, 2011, 36, 687.	3.3	50

#	Article	IF	CITATIONS
37	Glass and Process Development for the Next Generation of Optical Fibers: A Review. Fibers, 2017, 5, 11.	4.0	50
38	Reactive molten core fabrication of silicon optical fiber. Optical Materials Express, 2011, 1, 1141.	3.0	48
39	Brillouin spectroscopy of a novel baria-doped silica glass optical fiber. Optics Express, 2013, 21, 10924.	3.4	48
40	Materials Development for Next Generation Optical Fiber. Materials, 2014, 7, 4411-4430.	2.9	48
41	Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles. Materials, 2010, 3, 2053-2068.	2.9	47
42	Singleâ€Cellâ€Level Cancer Therapy Using a Hollow Optical Fiberâ€Based Microplasma. Small, 2010, 6, 1474-1478.	10.0	46
43	Germanium microsphere high-Q resonator. Optics Letters, 2012, 37, 728.	3.3	45
44	Temperature-Dependence of Multiphonon Relaxation of Rare-Earth Ions in Solid-State Hosts. Journal of Physical Chemistry C, 2016, 120, 9958-9964.	3.1	45
45	Tapered silicon core fibers with nano-spikes for optical coupling via spliced silica fibers. Optics Express, 2017, 25, 24157.	3.4	44
46	Pockels' coefficients of alumina in aluminosilicate optical fiber. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 244.	2.1	43
47	Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers. Optical Materials Express, 2017, 7, 1589.	3.0	43
48	Laser cooling in a silica optical fiber at atmospheric pressure. Optics Letters, 2020, 45, 1092.	3.3	43
49	Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared. Optics Letters, 2014, 39, 5721.	3.3	42
50	Solution synthesis and spectroscopic characterization of high Er3+ content LaF3 for broadband 1.5 μm amplification. Journal of Applied Physics, 2004, 95, 40-47.	2.5	41
51	Erâ€Doped Y ₂ O ₃ Nanoparticles: A Comparison of Different Synthesis Methods. Journal of the American Ceramic Society, 2009, 92, 2247-2253.	3.8	41
52	Annealing of silicon optical fibers. Journal of Applied Physics, 2011, 110, .	2.5	41
53	Enhanced piezoelectric performance from carbon fluoropolymer nanocomposites. Journal of Applied Physics, 2012, 112, .	2.5	40
54	Additivity of the coefficient of thermal expansion in silicate optical fibers. Optics Letters, 2017, 42, 3650.	3.3	40

#	Article	IF	CITATIONS
55	Feasibility study of Yb:YAG-derived silicate fibers with large Yb content as gain media. Optical Materials, 2012, 34, 1294-1298.	3.6	39
56	Use of thulium-doped LaF3 nanoparticles to lower the phonon energy of the thulium's environment in silica-based optical fibres. Optical Materials, 2017, 68, 24-28.	3.6	39
57	Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers. Optica, 2015, 2, 313.	9.3	38
58	Silicon optical fibres – past, present, and future. Advances in Physics: X, 2016, 1, 114-127.	4.1	38
59	Fiberâ€drawâ€induced elongation and breakâ€up of particles inside the core of a silicaâ€based optical fiber. Journal of the American Ceramic Society, 2017, 100, 1814-1819.	3.8	38
60	Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime. Optics Express, 2013, 21, 13075.	3.4	37
61	Low-loss silicon core fibre platform for mid-infrared nonlinear photonics. Light: Science and Applications, 2019, 8, 105.	16.6	36
62	Nearâ€Infrared and Upconversion Luminescence in Er:Y ₂ O ₃ Ceramics under 1.5Âμm Excitation. Journal of the American Ceramic Society, 2014, 97, 2105-2110.	3.8	35
63	Translucent and persistent luminescent SrAl2O4:Eu2+Dy3+ ceramics. Ceramics International, 2016, 42, 4306-4312.	4.8	35
64	Wavelength Conversion and Supercontinuum Generation in Silicon Optical Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-9.	2.9	35
65	Cladding Glass Development for Semiconductor Core Optical Fibers. International Journal of Applied Glass Science, 2012, 3, 144-153.	2.0	33
66	Characterisation of Raman gain spectra in Yb:YAGâ€derived optical fibres. Electronics Letters, 2013, 49, 895-897.	1.0	33
67	Infrared Spectroscopic Characterization of Photoluminescent Polymer Nanocomposites. Journal of Spectroscopy, 2015, 2015, 1-9.	1.3	33
68	Effect of the Ce3+ concentration on laser-sintered YAG ceramics for white LEDs applications. Journal of the European Ceramic Society, 2020, 40, 3673-3678.	5.7	33
69	Kerr nonlinear switching in a hybrid silica-silicon microspherical resonator. Optics Express, 2015, 23, 17263.	3.4	32
70	Frozen light in periodic stacks of anisotropic layers. Physical Review E, 2005, 71, 036612.	2.1	31
71	On crystallographic orientation in crystal core optical fibers. Optical Materials, 2010, 32, 862-867.	3.6	31
72	Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers. Optical Materials Express, 2012, 2, 1641.	3.0	31

#	Article	IF	CITATIONS
73	Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber. Optics Letters, 2018, 43, 3096.	3.3	31
74	Intense plasma emission induced by jet-to-jet coupling in atmospheric pressure plasma arrays. Applied Physics Letters, 2012, 101, .	3.3	30
75	On loss in silicon core optical fibers. Optical Materials Express, 2012, 2, 1511.	3.0	29
76	The influence of core geometry on the crystallography of silicon optical fiber. Journal of Crystal Growth, 2012, 352, 53-58.	1.5	29
77	Spinel-derived single mode optical fiber. Optical Materials Express, 2013, 3, 511.	3.0	28
78	Glass: The Carrier of Light ―A Brief History of Optical Fiber. International Journal of Applied Glass Science, 2016, 7, 413-422.	2.0	28
79	Experimental comparison of silica fibers for laser cooling. Optics Letters, 2020, 45, 4020.	3.3	28
80	Synthesis and comparison of CF3 versus CH3 substituted perfluorocyclobutyl (PFCB) networks for optical applications. Journal of Polymer Science Part A, 2004, 42, 5292-5300.	2.3	27
81	The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers. Optical Materials, 2013, 35, 1627-1632.	3.6	27
82	Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber. Journal of Lightwave Technology, 2016, 34, 1435-1441.	4.6	27
83	Laser sintering of persistent luminescent CaAl2O4:Eu2+Dy3+ ceramics. Optical Materials, 2017, 68, 2-6.	3.6	27
84	Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres. Nature Communications, 2019, 10, 1790.	12.8	27
85	Radiation-balanced silica fiber laser. Optica, 2021, 8, 830.	9.3	27
86	A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. Material additivity models and basic glass properties. International Journal of Applied Glass Science, 2018, 9, 278-287.	2.0	26
87	Structural Determination of Lightâ€Emitting Inorganic Nanoparticles with Complex Core/Shell Architectures. Advanced Materials, 2007, 19, 3266-3270.	21.0	25
88	Designer emission spectra through tailored energy transfer in nanoparticle-doped silica preforms. Optics Letters, 2009, 34, 2339.	3.3	25
89	Reactive molten core fabrication of glass-clad amorphous and crystalline oxide optical fibers. Optical Materials Express, 2012, 2, 153.	3.0	25
90	Reactive oxygen species controllable non-thermal helium plasmas for evaluation of plasmid DNA strand breaks. Applied Physics Letters, 2012, 101, .	3.3	25

#	Article	IF	CITATIONS
91	Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing. Optics Letters, 2015, 40, 5030.	3.3	25
92	A unified materials approach to mitigating optical nonlinearities in optical fiber. <scp>II</scp> . B. The optical fiber, material additivity and the nonlinear coefficients. International Journal of Applied Glass Science, 2018, 9, 307-318.	2.0	25
93	Organic–inorganic hybrid nanoparticles with enhanced rare-earth emissions. Optical Materials, 2009, 31, 1327-1330.	3.6	24
94	On crystallographic orientation in crystal core optical fibers II: Effects of tapering. Optical Materials, 2012, 35, 93-96.	3.6	24
95	Brillouin scattering properties of lanthano–aluminosilicate optical fiber. Applied Optics, 2014, 53, 5660.	1.8	24
96	A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map. International Journal of Applied Glass Science, 2018, 9, 447-470.	2.0	24
97	Semiconductor core fibres: materials science in a bottle. Nature Communications, 2021, 12, 3990.	12.8	24
98	Liquid Crystalline Perfluorocyclobutyl Aryl Ether Polymers Containing Oligophenylene Mesogens. Macromolecules, 2006, 39, 4646-4649.	4.8	23
99	A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering. International Journal of Applied Glass Science, 2018, 9, 263-277.	2.0	23
100	Nonlinear optical properties of polycrystalline silicon core fibers from telecom wavelengths into the mid-infrared spectral region. Optical Materials Express, 2019, 9, 1271.	3.0	23
101	Light trapping in horizontally aligned silicon microwire solar cells. Optics Express, 2015, 23, A1463.	3.4	22
102	Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres. JPhys Photonics, 2019, 1, 042001.	4.6	22
103	Four-Wave Mixing-Based Wavelength Conversion and Parametric Amplification in Submicron Silicon Core Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-11.	2.9	22
104	Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy. Optics Express, 2012, 20, 14494.	3.4	21
105	All-fibre heterogeneously-integrated frequency comb generation using silicon core fibre. Nature Communications, 2022, 13, .	12.8	21
106	Infrared fluorescence and optical gain characteristics of chalcogenide-bound erbium cluster-fluoropolymer nanocomposites. Applied Physics Letters, 2006, 88, 091902.	3.3	20
107	A Brief Review of Specialty Optical Fibers for Brillouin-Scattering-Based Distributed Sensors. Applied Sciences (Switzerland), 2018, 8, 1996.	2.5	20
108	On the morphologies of oxides particles in optical fibers: Effect of the drawing tension and composition. Optical Materials, 2019, 87, 74-79.	3.6	20

#	Article	IF	CITATIONS
109	Disordered Anderson Localization Optical Fibers for Image Transport—A Review. Journal of Lightwave Technology, 2019, 37, 5652-5659.	4.6	20
110	Net optical parametric gain in a submicron silicon core fiber pumped in the telecom band. APL Photonics, 2019, 4, .	5.7	20
111	Glass: The carrier of light—Part II—A brief look into the future of optical fiber. International Journal of Applied Glass Science, 2021, 12, 3-24.	2.0	20
112	Evolution of Luminescence from Doped Gallium Phosphide over 40ÂYears. Journal of Electronic Materials, 2009, 38, 640-646.	2.2	19
113	Spectral engineering of optical fiber preforms through active nanoparticle doping. Optical Materials Express, 2012, 2, 1520.	3.0	19
114	On the thermo-optic coefficient of P_2O_5 in SiO_2. Optical Materials Express, 2017, 7, 3654.	3.0	19
115	Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers. Applied Physics Letters, 2013, 102, .	3.3	18
116	Spectral engineering of LaF3:Ce3+ nanoparticles: The role of Ce3+ in surface sites. Journal of Applied Physics, 2012, 111, .	2.5	17
117	Crystalline GaSb-core optical fibers with room-temperature photoluminescence. Optical Materials Express, 2018, 8, 1435.	3.0	17
118	Tunable continuous wave emission via phase-matched second harmonic generation in a ZnSe microcylindrical resonator. Scientific Reports, 2015, 5, 11798.	3.3	16
119	Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy. Journal of Materials Science, 2015, 50, 3183-3188.	3.7	16
120	Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities. Optical Materials Express, 2018, 8, 744.	3.0	16
121	Insights and Aspects to the Modeling of the Molten Core Method for Optical Fiber Fabrication. Materials, 2019, 12, 2898.	2.9	16
122	Continuous-wave Raman amplification in silicon core fibers pumped in the telecom band. APL Photonics, 2021, 6, .	5.7	16
123	CO ₂ laser annealed SiGe core optical fibers with radial Ge concentration gradients. Optical Materials Express, 2020, 10, 926.	3.0	16
124	Materials for freezing light. Waves in Random and Complex Media, 2005, 15, 113-118.	2.7	15
125	Scintillation of rare earth doped fluoride nanoparticles. Applied Physics Letters, 2011, 99, .	3.3	15
126	Highly nonlinear yttrium-aluminosilicate optical fiber with a high intrinsic stimulated Brillouin scattering threshold. Optics Letters, 2017, 42, 4849.	3.3	14

#	Article	IF	CITATIONS
127	All-optical high-speed modulation of THz transmission through silicon core optical fibers. Optics Express, 2021, 29, 3543.	3.4	14
128	Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography. IEEE Photonics Technology Letters, 2000, 12, 1650-1652.	2,5	13
129	Toward a photoconducting semiconductor RF optical fiber antenna array. Applied Optics, 2010, 49, 5163.	2.1	13
130	Bulk fabrication and properties of solar grade silicon microwires. APL Materials, 2014, 2, 116108.	5.1	13
131	Structural, microstructural, and luminescent properties of laser-sintered Eu-doped YAG ceramics. Optical Materials, 2019, 89, 334-339.	3.6	13
132	Laser sintering and photoluminescence study of Tb-doped yttrium aluminum garnet ceramics. Ceramics International, 2019, 45, 3797-3802.	4.8	13
133	Broadband infrared and THz transmitting silicon core optical fiber. Optical Materials Express, 2020, 10, 2491.	3.0	13
134	Ge-capped SiGe core optical fibers. Optical Materials Express, 2019, 9, 4301.	3.0	13
135	120 Years of Optical Glass Science. Optics and Photonics News, 2014, 25, 44.	0.5	13
136	3D Laser Engineering of Molten Core Optical Fibers: Toward a New Generation of Harsh Environment Sensing Devices. Advanced Optical Materials, 2022, 10, .	7.3	13
137	The Influence of Synthesis Parameters on Particle Size and Photoluminescence Characteristics of Ligand Capped Tb3+:LaF3. Polymers, 2011, 3, 2039-2052.	4.5	12
138	Pockels Coefficients in Multicomponent Oxide Glasses. International Journal of Applied Glass Science, 2015, 6, 387-396.	2.0	12
139	Oxyfluoride Core Silica-Based Optical Fiber With Intrinsically Low Nonlinearities for High Energy Laser Applications. Journal of Lightwave Technology, 2018, 36, 284-291.	4.6	12
140	Random lasing from optical fibers with phase separated glass cores. Optics Express, 2020, 28, 22049.	3.4	12
141	On the Anomalously Strong Dependence of the Acoustic Velocity of Alumina on Temperature in Aluminosilicate Glass Optical Fibers—Part I: Material Modeling and Experimental Validation. International Journal of Applied Glass Science, 2016, 7, 3-10.	2.0	11
142	Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG. New Journal of Physics, 2016, 18, 015004.	2.9	11
143	The linear and nonlinear refractive index of amorphous Al ₂ O ₃ deduced from aluminosilicate optical fibers. International Journal of Applied Glass Science, 2018, 9, 421-427.	2.0	11
144	Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres. Journal of Chemical Thermodynamics, 2019, 128, 119-126.	2.0	11

#	Article	IF	CITATIONS
145	Observation and practical implications of nanoâ€scale phase separation in aluminosilicate glass optical fibers. Journal of the American Ceramic Society, 2019, 102, 879-883.	3.8	11
146	Kilowatt power scaling of an intrinsically low Brillouin and thermo-optic Yb-doped silica fiber [Invited]. Journal of the Optical Society of America B: Optical Physics, 2021, 38, F38.	2.1	11
147	Thermo-optic coefficient of B ₂ O ₃ and GeO ₂ co-doped silica fibers. Optical Materials Express, 2020, 10, 1509.	3.0	11
148	A Novel Route to Fibers with Incongruent and Volatile Crystalline Semiconductor Cores: GaAs. ACS Photonics, 2022, 9, 1058-1064.	6.6	11
149	Time-dependent evolution of crystal lattice, defects and impurities in CdIn2S4and GaP. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1112-1115.	0.8	10
150	Fiber Integrated Wavelength Converter Based on a Silicon Core Fiber With a Nano-Spike Coupler. IEEE Photonics Technology Letters, 2019, 31, 1561-1564.	2.5	10
151	Raman enhanced four-wave mixing in silicon core fibers. Optics Letters, 2022, 47, 1626.	3.3	10
152	Evolution of Optical and Mechanical Properties of Semiconductors over 40ÂYears. Journal of Electronic Materials, 2010, 39, 635-641.	2.2	9
153	Optimized statically nonâ€wetting hydrophobic electrospun surface of perfluorocyclobutyl aryl ether polymer. Polymer International, 2013, 62, 1152-1158.	3.1	9
154	Transverse Anderson Localization in Disordered Glass Optical Fibers: A Review. Materials, 2014, 7, 5520-5527.	2.9	9
155	Characterisation of silicon fibre Bragg grating in nearâ€infrared band for strain and temperature sensing. Electronics Letters, 2018, 54, 1393-1395.	1.0	9
156	Optimizing thermal conduction in bulk polycrystalline SrTiO3â^îr´ ceramics via oxygen non-stoichiometry. MRS Communications, 2018, 8, 1470-1476.	1.8	9
157	Molten core fabrication of bismuth germanium oxide Bi ₄ Ge ₃ O ₁₂ crystalline core fibers. Journal of the American Ceramic Society, 2018, 101, 4340-4349.	3.8	9
158	Laser sintering and influence of the Dy concentration on BaAl2O4:Eu2+, Dy3+ persistent luminescence ceramics. Journal of the European Ceramic Society, 2021, 41, 3629-3634.	5.7	9
159	On the origin of photodarkening resistance in Yb-doped silica fibers with high aluminum concentration. Optical Materials Express, 2021, 11, 115.	3.0	9
160	Localised structuring of metal-semiconductor cores in silica clad fibres using laser-driven thermal gradients. Nature Communications, 2022, 13, 2680.	12.8	9
161	Spectroscopic properties as a function of fluorine content in Eu3+:PMMA. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1592-1596.	2.1	8
162	Fabrication and characterization of GaP/polymer nanocomposites for advanced light emissive device structures. Journal of Nanoparticle Research, 2011, 13, 5565-5570.	1.9	8

#	Article	IF	CITATIONS
163	Correlation between native As2Se3 preform purity and glass optical fiber mechanical strength. Materials Research Bulletin, 2014, 49, 250-258.	5.2	8
164	Advances in the fabrication of disordered transverse Anderson localizing optical fibers [Invited]. Optical Materials Express, 2019, 9, 2769.	3.0	8
165	Reduced quantum defect in a Yb-doped fiber laser by balanced dual-wavelength excitation. Applied Physics Letters, 2021, 119, .	3.3	8
166	Anti-Stokes fluorescence cooling of nanoparticle-doped silica fibers. Optics Letters, 2022, 47, 2590.	3.3	8
167	Luminescence of Long-Term Ordered Pure and Doped Gallium Phosphide. Journal of Electronic Materials, 2008, 37, 388-395.	2.2	7
168	Ultracompact AWG Using Air-Trench Bends With Perfluorocyclobutyl Polymer Waveguides. Journal of Lightwave Technology, 2008, 26, 3062-3070.	4.6	7
169	On the Anomalously Strong Dependence of the Acoustic Velocity of Alumina on Temperature in Aluminosilicate Glass Optical Fibers—Part <scp>II</scp> : Acoustic Properties of Alumina and Silica Polymorphs, and Approximations of the Glassy State. International Journal of Applied Glass Science, 2016. 7. 11-26.	2.0	7
170	Deduced elasticity of sp3-bonded amorphous diamond. Applied Physics Letters, 2017, 111, .	3.3	7
171	Observation of optical nonlinearities in an all-solid transverse Anderson localizing optical fiber. Optics Letters, 2020, 45, 599.	3.3	7
172	Property-tailorable PFCB-containing polymers for wavelength division devices. Journal of Lightwave Technology, 2006, 24, 3227-3234.	4.6	6
173	Modal Interferometer Based on ARROW Fiber for Strain and Temperature Measurement. IEEE Photonics Technology Letters, 2009, 21, 1636-1638.	2.5	6
174	Apoptosis Experiments of Cultured Tumor Cells Treated With 200- \$muhbox{m}\$-Sized Flexible Microplasma Jet. IEEE Transactions on Plasma Science, 2011, 39, 2974-2975.	1.3	6
175	Atmospheric-Pressure Microplasma Jets From Linear Arrays of Hollow-Core Optical Fibers for Biomedical Applications. IEEE Transactions on Plasma Science, 2011, 39, 2958-2959.	1.3	6
176	Calcium silicate and fluorosilicate optical fibers for high energy laser applications. Optical Materials Express, 2019, 9, 2147.	3.0	6
177	The uniqueness of glass for passive thermal management for optical fibers. International Journal of Applied Glass Science, 2022, 13, 267-280.	2.0	6
178	Structure Determination in Colloidal Crystal Photonic Bandgap Structures. Journal of the American Ceramic Society, 2002, 85, 1366-1368.	3.8	5
179	Synthesis and Characterization of Eu3+-Doped Sol?Gel Silica Containing Vanadium Oxide Nanotubes. Journal of the American Ceramic Society, 2006, 89, 3573-3576.	3.8	5
180	AlPO ₄ in Silica Glass Optical Fibers: Deduction of Additional Material Properties. IEEE Photonics Journal, 2019, 11, 1-13.	2.0	5

#	Article	IF	CITATIONS
181	Study of La-doped barium titanate ceramics obtained by laser sintering technique. Journal of Electroceramics, 2019, 42, 98-103.	2.0	5
182	Phase separation and transformation of binary immiscible systems in molten core-derived optical fibers. MRS Communications, 2020, 10, 298-304.	1.8	5
183	Concentration quenching and clustering effects in Er:YAG-derived all-glass optical fiber. Optical Materials Express, 2021, 11, 3587.	3.0	5
184	Effects of Sintering Temperature on Openâ€Volume Defects and Thermoluminescence of Yttria and Lutetia Ceramics. Journal of the American Ceramic Society, 2016, 99, 1449-1454.	3.8	4
185	Review of a Decade of Research on Disordered Anderson Localizing Optical Fibers. Frontiers in Physics, 2021, 9, .	2.1	4
186	Semiconductor Core Optical Fibers. IEEE Photonics Journal, 2011, 3, 259-262.	2.0	3
187	Core opportunities for future optical fibers. JPhys Photonics, 2021, 3, 041001.	4.6	3
188	Low Quantum Defect Fiber Lasers via Yb-Doped Multicomponent Fluorosilicate Optical Fiber. , 2018, , .		3
189	AC conduction mechanism of SrBi2Ta2O9 thin films below room temperature. Journal of Materials Science Letters, 2003, 22, 5-7.	0.5	2
190	Single mode lasing in a gain-guided index anti-guided diode end pumped fiber. , 2008, , .		2
191	An analysis of coupling between a whispering gallery mode laser in an elliptical microring and the dominant mode in the coaxially oriented elliptical optical fiber. Journal of Applied Physics, 2010, 107, 023104.	2.5	2
192	Silicon fibre nano-spike for robust coupling to silica fibres. , 2017, , .		2
193	Novel reactive molten core fabrication employing in-situ metal oxidation: Erbium-doped intrinsically low Brillouin scattering optical fiber. Optical Materials: X, 2019, 1, 100009.	0.8	2
194	All optical fiber thermal vacuum gauge. JPhys Photonics, 2020, 2, 014006.	4.6	2
195	Carbon Nanotube Doped Polyaniline. , 2002, 14, 1480.		2
196	Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers. , 2018, , .		2
197	Future of Optical Glass Education. Optical Materials Express, 0, , .	3.0	2
198	Single mode lasing in a 200μm diameter core gain-guided index anti-guided diode end pumped fiber. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	1

#	Article	IF	CITATIONS
199	Novel Visible Light Emitting Optical Fibers Using Up-Conversion. Journal of Display Technology, 2011, 7, 295-300.	1.2	1
200	Multiphonon-based comparison of erbium-doped yttria in large, fine grain polycrystalline ceramics and precursor forms. Optical Materials, 2011, 34, 95-98.	3.6	1
201	Cancer Therapy: Single ell‣evel Microplasma Cancer Therapy (Small 16/2011). Small, 2011, 7, 2290-2290.	10.0	1
202	Non-thermal oxygen-rich helium plasmas using theta shaped tubing for evaluation of plasmid DNA strand breaks. , 2012, , .		1
203	Chirped rectilinear core longitudinally-graded optical fibers. Optical Fiber Technology, 2013, 19, 432-436.	2.7	1
204	Anderson localisation in fibres. , 2014, , .		1
205	Optical Fiber Materials: feature introduction. Optical Materials Express, 2019, 9, 3565.	3.0	1
206	A Materials Approach Toward the Mitigation of Nonlinearities in Glass Optical Fibers. , 2019, , .		1
207	Sellmeier circuits: A unifying view on optical and plasma dispersion fitting formulas. Journal of Applied Physics, 2020, 128, .	2.5	1
208	Robinson–Martin: Relating the 4Â⁻3m and 6mm nonlinear piezoelectric tensors. AIP Advances, 2020, 10, 095321.	1.3	1
209	Reduced loss in SiGe-core optical fibers. , 2018, , .		1
210	Designing silicon-core fiber tapers for efficient supercontinuum generation in the greenhouse gas absorption region. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1698.	2.1	1
211	Athermal Optical Fibers for Sensing Applications. , 2019, , .		1
212	Growth and Properties of Doped Scandia Crystals. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
213	Specialty High Performance Coatings for Optical Fiber Applications via Perfluorocyclobutyl (PFCB) Aryl Ether Polymers. Materials Research Society Symposia Proceedings, 2007, 1030, 1.	0.1	0
214	Scintillation of nanoparticles: Case study of rare earth doped fluorides. , 2010, , .		0
215	Advances in semiconductor core optical fiber. , 2011, , .		0
216	Longitudinally-graded optical fibers. , 2012, , .		0

#	Article	IF	CITATIONS
217	Novel Brillouin- and Raman-suppressing optical fibers. , 2014, , .		0
218	Compositional tuning of glass for the suppression of nonlinear and parasitic fiber laser phenomena. Proceedings of SPIE, 2014, , .	0.8	0
219	The effects of thermal processing on the luminescence of Y2O3:Tm transparent ceramic. , 2014, , .		0
220	Rethinking optical fiber. , 2015, , .		0
221	Specialty optical fiber materials and fabrication techniques for lasers. , 2017, , .		0
222	Materials Development for Advanced Optical Fiber Sensors and Lasers. , 2018, , 1-33.		0
223	A nano shell game. Nature Photonics, 2018, 12, 501-502.	31.4	0
224	Power Scaling of Diffraction-Limited, Narrow-Linewidth Fiber Lasers to Beyond 10 kW. , 2020, , .		0
225	Stimulated Raman Scattering in a Tapered Submicron Silicon Core Fiber. , 2021, , .		Ο
226	Thermal Stability of Type II Modifications by IR Femtosecond Laser in Highly-Doped Aluminosilicate Glass Optical Fibers. , 2021, , .		0
227	Parametric frequency comb generation using silicon core fiber. , 2021, , .		0
228	Fiber integrated silicon photonics. , 2018, , .		0
229	Future of Semiconductor-core Optical Fibers. , 2018, , .		Ο
230	Materials Development for Advanced OpticalÂFiber Sensors and Lasers. , 2019, , 1301-1333.		0
231	All-optically-driven and All-optical-fiber Vacuum Gauge via Ytterbium-doped Optical Fiber Microheater. , 2021, , .		0
232	Stokes and anti-Stokes pumped Yb-doped fiber lasers. , 2021, , .		0
233	Anti-Stokes cooling and other thermal managements techniques in fiber lasers and amplifiers. , 2022, , .		0
234	Optical characterization of disordered Yb-doped silica glass Anderson localizing optical fiber. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1272.	2.1	0