Tao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4356973/publications.pdf

Version: 2024-02-01

60	986	19	29
papers	citations	h-index	g-index
60	60	60	561 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Ceramic 3D Printing via Dye-Sensitized Photopolymerization Under Green LED. 3D Printing and Additive Manufacturing, 2023, 10, 310-317.	2.9	2
2	Study of fallingâ€downâ€type DLP 3D printing technology for highâ€resolution hydroxyapatite scaffolds. International Journal of Applied Ceramic Technology, 2022, 19, 268-280.	2.1	9
3	The three-component photoinitiating systems based on flavonol sulfonate and application in 3D printing. Dyes and Pigments, 2022, 197, 109899.	3.7	4
4	Double benzylidene ketones as photoinitiators for visible light photopolymerization. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 429, 113938.	3.9	24
5	Progress of Experimental and Computational Catalyst Design for Electrochemical Nitrogen Fixation. ACS Catalysis, 2022, 12, 8936-8975.	11.2	41
6	Acetylene bridged D-(Ï€-A)2 type dyes containing benzophenone moieties: Photophysical properties, and the potential application as photoinitiators. Dyes and Pigments, 2021, 184, 108583.	3.7	32
7	Novel Norrish type I flavonoid photoinitiator for safe LED light with high activity and low toxicity by inhibiting the ESIPT process. Dyes and Pigments, 2021, 184, 108865.	3.7	24
8	Molecular tuning of the crystallization-induced emission enhancement of diphenyl-dibenzofulvene luminogens. Chemical Communications, 2021, 57, 484-487.	4.1	10
9	3D Printing of Integrated Ceramic Membranes by the DLP Method. Industrial & Engineering Chemistry Research, 2021, 60, 9368-9377.	3.7	21
10	Electrochemical Reduction of N ₂ into NH ₃ under Ambient Conditions Using Ag-doped TiO ₂ Nanofibers. ACS Applied Nano Materials, 2021, 4, 10370-10377.	5.0	4
11	Gradient Equivalent Feeding in the Acylation of 2,3-Dihydrobenzofuran Catalyzed by Chloroaluminate lonic Liquids. ACS Sustainable Chemistry and Engineering, 2021, 9, 15957-15962.	6.7	2
12	Flavonol dyes with different substituents in photopolymerization. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112097.	3.9	45
13	Highly Twisted Arylâ€Anthraquinodimethanes: Synthesis, Characterization, and Fluorescence Sensing of TNT. European Journal of Organic Chemistry, 2020, 2020, 4031-4041.	2.4	1
14	Carbazolyl α-diketones as novel photoinitiators in photopolymerization under LEDs. Progress in Organic Coatings, 2020, 144, 105651.	3.9	9
15	Photopolymerization with AIE dyes for solid-state luminophores. Polymer Chemistry, 2020, 11, 1589-1596.	3.9	7
16	Unveiling the electronic effect of substituent on sensitized photopolymerization: An experimental and theoretical investigation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112551.	3.9	6
17	Curcuminoidâ€Based Difluoroboron Dyes as Highâ€Performance Photosensitizers in Longâ€Wavelength (Yellow and Red) Cationic Photopolymerization. Macromolecular Rapid Communications, 2019, 40, 1900291.	3.9	7
18	Multicomponent photoinitiating systems containing arylamino oxime ester for visible light photopolymerization. Progress in Organic Coatings, 2019, 135, 517-524.	3.9	33

#	Article	IF	Citations
19	A Visible-Light Curing system of Diphenyliodonium Salt/BODIPY dyes/Bisphenol-A Epoxy Resin Under Halogen Lamp. IOP Conference Series: Earth and Environmental Science, 2019, 300, 052016.	0.3	0
20	Photopolymerization of acrylate resin and ceramic suspensions with benzylidene ketones under blue/green LED. Polymer, 2019, 184, 121841.	3.8	49
21	Synthesis and electrochemical, linear and third-order nonlinear optical properties of ferrocene-based D-Ï€-A dyes as novel photoredox catalysts in photopolymerization under visible LED irradiations. Dyes and Pigments, 2019, 166, 140-148.	3.7	32
22	Synthesis, one/two-photon optical and electrochemical properties and the photopolymerization-sensitizing effect of anthracene-based dyes: influence of the donor groups. New Journal of Chemistry, 2019, 43, 6737-6745.	2.8	10
23	Diphenyl sulfone-based A–π-D–π-A dyes as efficient initiators for one-photon and two-photon initiated polymerization. Polymer Chemistry, 2019, 10, 2152-2161.	3.9	11
24	Design and synthesis ethynyl ferrocene-based multifunctional chemosensors for fluoride anion. Research on Chemical Intermediates, 2019, 45, 3557-3570.	2.7	2
25	Facilely prepared blue-green light sensitive curcuminoids with excellent bleaching properties as high performance photosensitizers in cationic and free radical photopolymerization. Polymer Chemistry, 2018, 9, 1787-1798.	3.9	64
26	Effects of conjugation on the properties of alkynylcarbazole compounds: experimental and theoretical study. Bulletin of Materials Science, 2018, 41, 1.	1.7	0
27	Carbazole- and/or triphenylamine-based D–π–D multiarylamino dyes: synthesis, characterization and photophysical properties. New Journal of Chemistry, 2017, 41, 13156-13165.	2.8	5
28	Conjugated phenothiazine oxime esters as free radical photoinitiators. Polymer Chemistry, 2017, 8, 6134-6142.	3.9	61
29	Carbazole-based compounds containing aldehyde and cyanoacetic acid: optical properties and applications in photopolymerization. RSC Advances, 2017, 7, 55382-55388.	3.6	10
30	D–D–A dyes with phenothiazine–carbazole/triphenylamine as double donors in photopolymerization under 455 nm and 532 nm laser beams. Polymer Chemistry, 2016, 7, 5039-5049.	3.9	32
31	Thiophene-substituted phenothiazine-based photosensitisers for radical and cationic photopolymerization reactions under visible laser beams (405 and 455 nm). Polymer Chemistry, 2016, 7, 5147-5156.	3.9	38
32	Synthesis and optical properties of cationic cyclopentadienyl iron complexes with diphenylacetylene chromophores. Inorganica Chimica Acta, 2015, 427, 259-265.	2.4	6
33	A synergistic effect of a ferrocenium salt on the diaryliodonium salt-induced visible-light curing of bisphenol-A epoxy resin. RSC Advances, 2015, 5, 33171-33176.	3.6	20
34	Aromatic amine–sulfone/sulfoxide conjugated D–π-A–π-D-type dyes in photopolymerization under 405 nm laser beams. Polymer Chemistry, 2015, 6, 4424-4435.	3.9	35
35	Synthesis and optical properties of a D–A–D cationic cyclopentadienyl iron complex containing double arylazo chromophores. Research on Chemical Intermediates, 2015, 41, 8245-8255.	2.7	0
36	Synthesis and optical properties of two cationic cyclopentadienyliron complexes of arene containing the triphenylbutene structure. Research on Chemical Intermediates, 2015, 41, 5095-5108.	2.7	2

#	Article	IF	Citations
37	Flame retardancy effects of phosphorusâ€containing compounds and cationic photoinitiators on photopolymerized cycloaliphatic epoxy resins. Journal of Applied Polymer Science, 2014, 131, .	2.6	7
38	Efficient Pd-Catalyzed Coupling Reaction of Cationic Cyclopentadienyliron Complexes of Chloro-substituted Arenes with Arylboronic Acid. Industrial & Engineering Chemistry Research, 2014, 53, 1308-1312.	3.7	10
39	UV spectroscopic studies and charge transfer properties of azobenzene-containing cyclopentadienyliron complexes of arenes: A combined experimental and density functional theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 104, 287-291.	3.9	12
40	Photo-Fenton reaction of supported cationic cyclopentadienyl iron complexes of arene and application as heterogeneous catalysts in photodegradation of dyes under visible light. Inorganica Chimica Acta, 2013, 406, 37-43.	2.4	8
41	UV-Curable Epoxy Silicone with a High Refractive Index and Self-Photosensitizing Effect. Industrial & Lamp; Engineering Chemistry Research, 2012, 51, 15832-15838.	3.7	18
42	Investigation of thermal instability of benzoyl peroxide in the presence of carbazole and its derivatives. Thermochimica Acta, 2012, 543, 232-238.	2.7	12
43	Synthesis, spectroscopic characterization, and molecular structure of triphenyl butene derivatives containing a cyclopentadienyl iron unit. Inorganica Chimica Acta, 2012, 392, 374-379.	2.4	5
44	Synthesis and cationic photopolymerization of phenyl epoxy-silicone monomers. Journal of Polymer Research, 2012, 19, 1.	2.4	8
45	Cationic cyclopentadienyliron azo-complexes: Synthesis, spectroscopic characterization, and molecular structure. Dyes and Pigments, 2012, 94, 314-319.	3.7	11
46	A new visible light bimolecular photoinitiator system for free radical polymerization. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 330-335.	3.9	7
47	Visible light curing of bisphenol-A epoxides and acrylates photoinitiated by (Î-6-benzophenone)(Î-5-cyclopentadienyl) iron hexafluorophosphate. Journal of Polymer Research, 2011, 18, 1425-1429.	2.4	13
48	Absorption, fluorescence, and photoinitiating properties of the aromatic ethers and aromatic amines complexes of cyclopentadienyliron. Research on Chemical Intermediates, 2011, 37, 847-857.	2.7	4
49	Synthesis and photochemical properties of cationic cyclopentadienyliron containing arylazo chromophores. Inorganic Chemistry Communication, 2011, 14, 1516-1519.	3.9	8
50	A novel ferrocenium salt as visible light photoinitiator for cationic and radical photopolymerization. Progress in Organic Coatings, 2010, 68, 234-239.	3.9	27
51	Synthesis and photoactivity of novel cationic photoinitiators: (Î-6-Diphenylmethane) (Î-5-cyclopentadienyl) iron hexafluorophosphate and (Î-6-benzophenone) (Î-5-cyclopentadienyl) iron hexafluorophosphate. Progress in Organic Coatings, 2009, 65, 251-256.	3.9	13
52	$(\hat{l}\cdot 6\text{-N-alkylcarbazole})$ $(\hat{l}\cdot 5\text{-cyclopentadienyl})$ iron hexafluorophosphate salts in photoinitiated and thermal epoxy polymerization. Polymer Engineering and Science, 2009, 49, 613-618.	3.1	16
53	Synthesis and Characterization of Dicyclopentadiene – cresol Epoxy Resin. Polymer Bulletin, 2008, 59, 787-793.	3.3	7
54	Biphenyl Bis [(Ï€-cyclopentadienyl) iron] Dication as an Efficient Cationic Photoinitiator for Epoxy Polymerization. Chinese Journal of Chemical Engineering, 2008, 16, 819-822.	3.5	9

#	ARTICLE	IF	CITATION
55	Several ferrocenium salts as efficient photoinitiators and thermal initiators for cationic epoxy polymerization. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 389-394.	3.9	43
56	Synthesis and Characterization of Alkoxy and Phenoxy-substituted Ferrocenium Salt Cationic Photoinitiators. Chinese Journal of Chemical Engineering, 2006, 14, 806-809.	3.5	8
57	Cationic photopolymerization of epoxy systems initiated by cyclopentadien-iron-biphenyl hexafluorophosphate ([Cp-Fe-biphenyl]+PF6-). Polymer Bulletin, 2005, 53, 323-331.	3.3	24
58	Carbazole-bound ferrocenium salt as an efficient cationic photoinitiator for epoxy polymerization. Polymer International, 2005, 54, 1251-1255.	3.1	21
59	A study of the photoactivities and thermomechanical properties of epoxy resins using novel [cyclopentadien-Fe-arene]+PF6â^' photoinitiators. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 77-86.	3.9	26
60	Two-photon polymerization of gratings by interference of a femtosecond laser pulse. Chemical Physics Letters, 2003, 374, 381-384.	2.6	11