Tony D James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4356578/publications.pdf

Version: 2024-02-01

415 papers

29,016 citations

82 h-index 7518

468 all docs

468 docs citations

468 times ranked 18393 citing authors

g-index

#	Article	IF	CITATIONS
1	Fluorescent chemosensors: the past, present and future. Chemical Society Reviews, 2017, 46, 7105-7123.	38.1	1,436
2	Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chemical Society Reviews, 2018, 47, 8842-8880.	38.1	993
3	Saccharide Sensing with Molecular Receptors Based on Boronic Acid. Angewandte Chemie International Edition in English, 1996, 35, 1910-1922.	4.4	853
4	Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature, 1995, 374, 345-347.	27.8	609
5	Exploiting the Reversible Covalent Bonding of Boronic Acids: Recognition, Sensing, and Assembly. Accounts of Chemical Research, 2013, 46, 312-326.	15.6	559
6	Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chemical Society Reviews, 2020, 49, 5110-5139.	38.1	516
7	Selective sensing of saccharides using simple boronic acids and their aggregates. Chemical Society Reviews, 2013, 42, 8032.	38.1	507
8	<i>In Vivo</i> and <i>in Situ</i> Tracking Cancer Chemotherapy by Highly Photostable NIR Fluorescent Theranostic Prodrug. Journal of the American Chemical Society, 2014, 136, 3579-3588.	13.7	494
9	Molecular logic gates: the past, present and future. Chemical Society Reviews, 2018, 47, 2228-2248.	38.1	468
10	Boronic acid building blocks: tools for self assembly. Chemical Communications, 2011, 47, 1124-1150.	4.1	466
11	Novel Saccharide-Photoinduced Electron Transfer Sensors Based on the Interaction of Boronic Acid and Amine. Journal of the American Chemical Society, 1995, 117, 8982-8987.	13.7	462
12	Reaction-Based Fluorescent Probes for the Detection and Imaging of Reactive Oxygen, Nitrogen, and Sulfur Species. Accounts of Chemical Research, 2019, 52, 2582-2597.	15.6	442
13	Real-Time Tracking and In Vivo Visualization of \hat{l}^2 -Galactosidase Activity in Colorectal Tumor with a Ratiometric Near-Infrared Fluorescent Probe. Journal of the American Chemical Society, 2016, 138, 5334-5340.	13.7	432
14	Artificial Receptors as Chemosensors for Carbohydrates. Topics in Current Chemistry, 2002, , 159-200.	4.0	386
15	Boron based anion receptors as sensors. Chemical Society Reviews, 2010, 39, 3831.	38.1	361
16	Boronic acid building blocks: tools for sensing and separation. Chemical Communications, 2011, 47, 1106.	4.1	361
17	Farâ€Red and Nearâ€IR AIEâ€Active Fluorescent Organic Nanoprobes with Enhanced Tumorâ€Targeting Efficacy: Shapeâ€Specific Effects. Angewandte Chemie - International Edition, 2015, 54, 7275-7280.	13.8	361
18	A Glucose-Selective Molecular Fluorescence Sensor. Angewandte Chemie International Edition in English, 1994, 33, 2207-2209.	4.4	342

#	Article	IF	CITATIONS
19	Glucose Sensing in Supramolecular Chemistry. Chemical Reviews, 2015, 115, 8001-8037.	47.7	324
20	Fluorescent small organic probes for biosensing. Chemical Science, 2021, 12, 3406-3426.	7.4	249
21	A highly selective red-emitting FRET fluorescent molecular probe derived from BODIPY for the detection of cysteine and homocysteine: an experimental and theoretical study. Chemical Science, 2012, 3, 1049-1061.	7.4	245
22	Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chemical Society Reviews, 2021, 50, 12098-12150.	38.1	236
23	Synthetic receptors. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3155-3184.	1.3	232
24	Rational Design of d-PeT Phenylethynylated-Carbazole Monoboronic Acid Fluorescent Sensors for the Selective Detection of α-Hydroxyl Carboxylic Acids and Monosaccharides. Journal of the American Chemical Society, 2009, 131, 17452-17463.	13.7	230
25	Boronic Acids in Molecular Selfâ€Assembly. Chemistry - an Asian Journal, 2008, 3, 1076-1091.	3.3	226
26	Selective fluorescence detection of fluoride using boronic acids. Chemical Communications, 1998 , , $1365-1366$.	4.1	215
27	Fluorescent saccharide receptors: a sweet solution to the design, assembly and evaluation of boronic acid derived PET sensors. Chemical Communications, 1996, , 281.	4.1	205
28	A water-soluble boronate-based fluorescent probe for the selective detection of peroxynitrite and imaging in living cells. Chemical Science, 2014, 5, 3368.	7.4	205
29	Chiral Binol–Bisboronic Acid as Fluorescence Sensor for Sugar Acids. Angewandte Chemie - International Edition, 2004, 43, 3461-3464.	13.8	200
30	A near-infrared colorimetric fluorescent chemodosimeter for the detection of glutathione in living cells. Chemical Communications, 2014, 50, 1751.	4.1	198
31	Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases. Tetrahedron, 2004, 60, 11175-11190.	1.9	197
32	Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine. Journal of the Chemical Society Chemical Communications, 1994, , 477.	2.0	193
33	Two-photon small-molecule fluorescence-based agents for sensing, imaging, and therapy within biological systems. Chemical Society Reviews, 2021, 50, 702-734.	38.1	187
34	Glucose Sensing via Aggregation and the Use of "Knock-Out―Binding To Improve Selectivity. Journal of the American Chemical Society, 2013, 135, 1700-1703.	13.7	184
35	An Enantioselective Fluorescent Sensor for Sugar Acids. Journal of the American Chemical Society, 2004, 126, 16179-16186.	13.7	178
36	Small-molecule fluorescence-based probes for interrogating major organ diseases. Chemical Society Reviews, 2021, 50, 9391-9429.	38.1	176

#	Article	IF	CITATIONS
37	An ESIPT Probe for the Ratiometric Imaging of Peroxynitrite Facilitated by Binding to A \hat{I}^2 -Aggregates. Journal of the American Chemical Society, 2018, 140, 14267-14271.	13.7	155
38	Dual-locked spectroscopic probes for sensing and therapy. Nature Reviews Chemistry, 2021, 5, 406-421.	30.2	144
39	Molecular Design Strategy to Construct the Near-Infrared Fluorescent Probe for Selectively Sensing Human Cytochrome P450 2J2. Journal of the American Chemical Society, 2019, 141, 1126-1134.	13.7	141
40	Indicator displacement assays (IDAs): the past, present and future. Chemical Society Reviews, 2021, 50, 9-38.	38.1	139
41	The development of a novel AND logic based fluorescence probe for the detection of peroxynitrite and GSH. Chemical Science, 2018, 9, 3672-3676.	7.4	136
42	Saccharidnachweis mit Rezeptoren auf Boronsärebasis. Angewandte Chemie, 1996, 108, 2038-2050.	2.0	132
43	Hierarchical supramolecules and organization using boronic acid building blocks. Chemical Communications, 2015, 51, 2005-2020.	4.1	131
44	The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids. Nature Chemistry, 2019, 11, 768-778.	13.6	131
45	Ratiometric Fluorescence Sensing of Fluoride Ions by an Asymmetric Bidentate Receptor Containing a Boronic Acid and Imidazolium Group. European Journal of Organic Chemistry, 2009, 2009, 3058-3065.	2.4	130
46	Azulene-Derived Fluorescent Probe for Bioimaging: Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy. Journal of the American Chemical Society, 2019, 141, 19389-19396.	13.7	125
47	Fluorescent probes for the imaging of lipid droplets in live cells. Coordination Chemistry Reviews, 2021, 427, 213577.	18.8	123
48	Biomimetic ion transport: a functional model of a unimolecular ion channel. Journal of the American Chemical Society, 1989, 111, 767-769.	13.7	121
49	Selective fluorogenic imaging of hepatocellular H ₂ S by a galactosyl azidonaphthalimide probe. Chemical Communications, 2015, 51, 3653-3655.	4.1	121
50	Multiplexed photoluminescent sensors: towards improved disease diagnostics. Chemical Society Reviews, 2017, 46, 6687-6696.	38.1	118
51	Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. Journal of the American Chemical Society, 2020, 142, 18005-18013.	13.7	118
52	Boronic Acidâ€Based Carbohydrate Sensing. Chemistry - an Asian Journal, 2015, 10, 1836-1848.	3.3	115
53	Long-wavelength fluorescent boronate probes for the detection and intracellular imaging of peroxynitrite. Chemical Communications, 2017, 53, 12822-12825.	4.1	112
54	Activities and modes of action of artificial ion channel mimics. Journal of the American Chemical Society, 1993, 115, 12315-12321.	13.7	111

#	Article	IF	CITATIONS
55	Fluorescent probes for the detection of disease-associated biomarkers. Science Bulletin, 2022, 67, 853-878.	9.0	110
56	3,6-Disubstituted Carbazole-Based Bisboronic Acids with Unusual Fluorescence Transduction as Enantioselective Fluorescent Chemosensors for Tartaric Acid. Journal of Organic Chemistry, 2009, 74, 1333-1336.	3.2	108
57	Probing disease-related proteins with fluorogenic composite materials. Chemical Society Reviews, 2015, 44, 4239-4248.	38.1	108
58	Boronate based fluorescence (ESIPT) probe for peroxynitrite. Chemical Communications, 2016, 52, 12350-12352.	4.1	108
59	Saccharide-Selective Boronic Acid Based Photoinduced Electron Transfer (PET) Fluorescent Sensors. , 2007, , 107-152.		107
60	Fluorescent alizarin–phenylboronic acid ensembles: design of self-organized molecular sensors for metal ions and anions. Journal of Materials Chemistry, 2005, 15, 2889.	6.7	105
61	Simple Protocol for NMR Analysis of the Enantiomeric Purity of Primary Amines. Organic Letters, 2006, 8, 609-612.	4.6	105
62	ESIPT-based fluorescence probe for the rapid detection of hypochlorite (HOCl/ClO $<$ sup $>$ â $^2<$ /sup $>$). Chemical Communications, 2018, 54, 8522-8525.	4.1	101
63	Fluorescent probe for the imaging of superoxide and peroxynitrite during drug-induced liver injury. Chemical Science, 2021, 12, 3921-3928.	7.4	99
64	Boronic acids for sensing and other applications - a mini-review of papers published in 2013. Chemistry Central Journal, 2014, 8, 60.	2.6	96
65	Determination of Enantiomeric Excess in Amine Derivatives with Molecular Selfâ€Assemblies. Angewandte Chemie - International Edition, 2015, 54, 7130-7133.	13.8	96
66	ESIPT-based ratiometric fluorescence probe for the intracellular imaging of peroxynitrite. Chemical Communications, 2018, 54, 9953-9956.	4.1	96
67	Evaluation of HOCl-generating anticancer agents by an ultrasensitive dual-mode fluorescent probe. Chemical Science, 2019, 10, 3715-3722.	7.4	96
68	Synthesis and structural characterisation of the first bis(bora)calixarene: a selective, bidentate, fluorescent fluoride sensor. Chemical Communications, 2004, , 1640-1641.	4.1	95
69	Ion Pair-Driven Heterodimeric Capsule Based on Boronate Esterification:  Construction and the Dynamic Behavior. Journal of the American Chemical Society, 2007, 129, 15126-15127.	13.7	95
70	Boronic acids for fluorescence imaging of carbohydrates. Chemical Communications, 2016, 52, 3456-3469.	4.1	95
71	A Modular Fluorescence Intramolecular Energy Transfer Saccharide Sensor. Organic Letters, 2002, 4, 4249-4251.	4.6	94
72	"Click-fluors―  Modular Fluorescent Saccharide Sensors Based on a 1,2,3-Triazole Ring. Journal of Organic Chemistry, 2008, 73, 2871-2874.	3.2	92

#	Article	IF	CITATIONS
73	Modular fluorescence sensors for saccharides. Chemical Communications, 2001, , 1836-1837.	4.1	91
74	Simple protocols for NMR analysis of the enantiomeric purity of chiral diols. Nature Protocols, 2008, 3, 215-219.	12.0	90
75	Dual-Channel Fluorescent Probe for the Simultaneous Monitoring of Peroxynitrite and Adenosine-5′-triphosphate in Cellular Applications. Journal of the American Chemical Society, 2022, 144, 174-183.	13.7	89
76	A ditopic fluorescent sensor for potassium fluoride. Chemical Communications, 2005, , 945.	4.1	88
77	Electrochemical Method for the Determination of Enantiomeric Excess of Binol Using Redox-Active Boronic Acids as Chiral Sensors. Journal of the American Chemical Society, 2010, 132, 8903-8905.	13.7	88
78	Fluorescent internal charge transfer (ICT) saccharide sensor. Tetrahedron Letters, 2001, 42, 4553-4555.	1.4	87
79	Simple protocols for NMR analysis of the enantiomeric purity of chiral primary amines. Nature Protocols, 2008, 3, 210-214.	12.0	85
80	Reaction-based Indicator displacement Assay (RIA) for the selective colorimetric and fluorometric detection of peroxynitrite. Chemical Science, 2015, 6, 2963-2967.	7.4	84
81	Chiral Mono Boronic Acid As Fluorescent Enantioselective Sensor for Mono α-Hydroxyl Carboxylic Acids. Journal of Organic Chemistry, 2008, 73, 4684-4687.	3.2	83
82	Enzyme Mimics for Engineered Biomimetic Cascade Nanoreactors: Mechanism, Applications, and Prospects. Advanced Functional Materials, 2021, 31, 2106139.	14.9	82
83	Recognition of sugars and related compounds by "reading-out―type interfaces. Supramolecular Chemistry, 1995, 6, 141-157.	1.2	81
84	A modular electrochemical sensor for saccharides. Chemical Communications, 2002, , 2368-2369.	4.1	81
85	Enantioselective Recognition of Mandelic Acid by a 3,6-Dithiophen-2-yl-9 <i>H</i> -carbazole-Based Chiral Fluorescent Bisboronic Acid Sensor. Journal of Organic Chemistry, 2011, 76, 5685-5695.	3.2	81
86	Simple Protocol for NMR Analysis of the Enantiomeric Purity of Diols. Organic Letters, 2006, 8, 1971-1974.	4.6	80
87	Dye displacement assay for saccharide detection with boronate hydrogels. Chemical Communications, 2009, , 532-534.	4.1	80
88	A simple visual sensor with the potential for determining the concentration of fluoride in water at environmentally significant levels. Chemical Communications, 2013, 49, 478-480.	4.1	80
89	Detection of anions using a fluorescent alizarin–phenylboronic acid ensemble. Chemical Communications, 2005, , 2846.	4.1	79
90	Electrochemical sensing using boronic acids. Chemical Communications, 2015, 51, 14562-14573.	4.1	79

#	Article	IF	Citations
91	Allosteric Interaction of Metal Ions with Saccharides in a Crowned Diboronic Acid. Journal of the American Chemical Society, 1994, 116, 4567-4572.	13.7	78
92	Ditopic boronic acid and imine-based naphthalimide fluorescence sensor for copper(<scp>ii</scp>). Chemical Communications, 2014, 50, 11806-11809.	4.1	76
93	Synthesis and evaluation of D-glucosamine-selective fluorescent sensors. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 963-969.	1.3	7 5
94	An OFF–ON fluorescent probe for Zn2+ based on a GFP-inspired imidazolone derivative attached to a 1,10-phenanthroline moiety. Chemical Communications, 2011, 47, 4361.	4.1	75
95	Target Enzymeâ€Activated Twoâ€Photon Fluorescent Probes: A Case Study of CYP3A4 Using a Twoâ€Dimensional Design Strategy. Angewandte Chemie - International Edition, 2019, 58, 9959-9963.	13.8	74
96	Modular fluorescence sensors for saccharides. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 803-808.	1.3	72
97	Ruthenium(II)–Polyimine–Coumarin Lightâ€Harvesting Molecular Arrays: Design Rationale and Application for Triplet–Tripletâ€Annihilationâ€Based Upconversion. Chemistry - A European Journal, 2012, 18, 4953-4964.	3.3	72
98	Sensors, Imaging Agents, and Theranostics to Help Understand and Treat Reactive Oxygen Species Related Diseases. Small Methods, 2019, 3, 1900013.	8.6	72
99	Effect of the Electron Donor/Acceptor Orientation on the Fluorescence Transduction Efficiency of the d-PET Effect of Carbazole-Based Fluorescent Boronic Acid Sensors. Journal of Organic Chemistry, 2010, 75, 2578-2588.	3.2	71
100	Boronic Acid Based Modular Fluorescent Sensors for Glucose. Journal of Fluorescence, 2004, 14, 549-559.	2.5	70
101	A bis-boronic acid modified electrode for the sensitive and selective determination of glucose concentrations. Analyst, The, 2013, 138, 7146.	3.5	70
102	A d-glucose selective fluorescent assay. Tetrahedron Letters, 2002, 43, 303-305.	1.4	69
103	Hepatoma-selective imaging of heavy metal ions using a †clicked†galactosylrhodamine probe. Chemical Communications, 2014, 50, 11735-11737.	4.1	69
104	Long-wavelength TCF-based fluorescence probes for the detection and intracellular imaging of biological thiols. Chemical Communications, 2018, 54, 4786-4789.	4.1	68
105	A hemicyanine based ratiometric fluorescence probe for mapping lysosomal pH during heat stroke in living cells. Chemical Communications, 2018, 54, 5518-5521.	4.1	68
106	Selective d-glucosamine hydrochloride fluorescence signalling based on ammonium cation and diol recognition. Chemical Communications, 1997, , 1419-1420.	4.1	67
107	Endoplasmic Reticulum Targeting Ratiometric Fluorescent Probe for Carboxylesterase 2 Detection in Drug-Induced Acute Liver Injury. Analytical Chemistry, 2019, 91, 15840-15845.	6.5	66
108	Azulene–boronate esters: colorimetric indicators for fluoride in drinking water. Chemical Communications, 2017, 53, 12580-12583.	4.1	65

#	Article	IF	Citations
109	Twoâ€Dimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence. Angewandte Chemie - International Edition, 2021, 60, 10756-10765.	13.8	65
110	ESIPT-based fluorescence probe for the rapid detection of peroxynitrite  AND' biological thiols. Chemical Communications, 2018, 54, 11336-11339.	4.1	64
111	Molecular Color Sensors for Monosaccharides. Organic Letters, 2002, 4, 477-479.	4.6	63
112	A pyridinium cation–π interaction sensor for the fluorescent detection of alkyl halides. Chemical Communications, 2011, 47, 253-255.	4.1	62
113	Fluorescent glycoprobes: a sweet addition for improved sensing. Chemical Communications, 2017, 53, 82-90.	4.1	62
114	Analysis of protein glycation using phenylboronate acrylamide gel electrophoresis. Proteomics, 2010, 10, 48-58.	2.2	61
115	The Development of Boronic Acids as Sensors and Separation Tools. Chemical Record, 2012, 12, 464-478.	5.8	61
116	A quick and selective rhodamine based "smart probe―for "signal-on―optical detection of Cu2+ and Al3+ in water, cell imaging, computational studies and solid state analysis. Sensors and Actuators B: Chemical, 2018, 266, 95-105.	7.8	61
117	Ratiometric two-photon fluorescent probe for <i>in situ</i> imaging of carboxylesterase (CE)-mediated mitochondrial acidification during medication. Chemical Communications, 2019, 55, 11358-11361.	4.1	61
118	Chiral Discrimination of Monosaccharides through Gel Formation. Chemistry Letters, 1994, 23, 273-276.	1.3	60
119	Assembly of N-hexadecyl-pyridinium-4-boronic acid hexafluorophosphate monolayer films with catechol sensing selectivity. Journal of Materials Chemistry, 2010, 20, 8305.	6.7	60
120	Arresting "Loose Bolt―Internal Conversion from â°'B(OH) ₂ Groups is the Mechanism for Emission Turn-On in <i>ortho</i> -Aminomethylphenylboronic Acid-Based Saccharide Sensors. Journal of the American Chemical Society, 2018, 140, 2348-2354.	13.7	60
121	Simple Chiral Derivatization Protocols for ¹ H NMR and ¹⁹ F NMR Spectroscopic Analysis of the Enantiopurity of Chiral Diols. Journal of Organic Chemistry, 2009, 74, 427-430.	3.2	59
122	Glycosylation enhances the aqueous sensitivity and lowers the cytotoxicity of a naphthalimide zinc ion fluorescence probe. Chemical Communications, 2015, 51, 11852-11855.	4.1	59
123	A molecular colour sensor for monosaccharides. Chemical Communications, 2000, , 229-230.	4.1	58
124	Circular dichroism of multi-component assemblies for chiral amine recognition and rapid ee determination. Chemical Science, 2012, 3, 156-161.	7.4	58
125	A saccharide †spongeâ€. Synthesis and properties of a dendritic boronic acid. Chemical Communications, 1996, , 705-706.	4.1	57
126	Pyrophosphate-induced reorganization of a reporter–receptor assembly via boronate esterification; a new strategy for the turn-on fluorescent detection of multi-phosphates in aqueous solution. Organic and Biomolecular Chemistry, 2008, 6, 3621.	2.8	56

#	Article	IF	Citations
127	Near-Infrared Colorimetric and Fluorescent Cu ²⁺ Sensors Based on Indoline–Benzothiadiazole Derivatives via Formation of Radical Cations. ACS Applied Materials & Lamp; Interfaces, 2013, 5, 12215-12220.	8.0	56
128	Metal-based imaging agents: progress towards interrogating neurodegenerative disease. Chemical Society Reviews, 2020, 49, 2886-2915.	38.1	56
129	Novel fluorescence sensor for â€~small' saccharides. Chemical Communications, 1997, , 71-72.	4.1	55
130	Carbohydrate sensing using a fluorescent molecular tweezer. Chemical Communications, 2009, , 6557.	4.1	55
131	Ubiquinone-quantum dot bioconjugates for in vitro and intracellular complex I sensing. Scientific Reports, 2013, 3, 1537.	3.3	55
132	Highly Efficient Photothermal Semiconductor Nanocomposites for Photothermal Imaging of Latent Fingerprints. Analytical Chemistry, 2015, 87, 11592-11598.	6.5	55
133	A redox-activated fluorescence switch based on a ferrocene–fluorophore–boronic ester conjugate. Chemical Communications, 2015, 51, 1293-1296.	4.1	55
134	A molecular recognition platform for the simultaneous sensing of diverse chemical weapons. Chemical Science, 2022, 13, 4523-4532.	7.4	55
135	Assembly of ion channel mimics from a modular construction set. Journal of Organic Chemistry, 1993, 58, 7456-7468.	3.2	54
136	A Computational Investigation of the Nitrogenâ^Boron Interaction in <i>o</i> -(<i>N</i> , <i>N</i> -Dialkylaminomethyl)arylboronate Systems. Journal of Physical Chemistry A, 2010, 114, 12531-12539.	2.5	54
137	A Fluorescent Chemodosimeter for Live-Cell Monitoring of Aqueous Sulfides. Analytical Chemistry, 2016, 88, 1434-1439.	6.5	54
138	The Bâ€"N bond controls the balance between locally excited (LE) and twisted internal charge transfer (TICT) states observed for aniline based fluorescent saccharide sensors. Tetrahedron Letters, 2004, 45, 2859-2862.	1.4	53
139	"Integrated―and "insulated―boronate-based fluorescent probes for the detection of hydrogen peroxide. Chemical Communications, 2013, 49, 8311.	4.1	53
140	Direct sensing of fluoride in aqueous solutions using a boronic acid based sensor. Chemical Communications, 2014, 50, 13987-13989.	4.1	53
141	Fluorescence detection and removal of copper from water using a biobased and biodegradable 2D soft material. Chemical Communications, 2018, 54, 184-187.	4.1	53
142	Chiral Donor Photoinducedâ€Electronâ€Transfer (dâ€PET) Boronic Acid Chemosensors for the Selective Recognition of Tartaric Acids, Disaccharides, and Ginsenosides. Chemistry - A European Journal, 2011, 17, 7632-7644.	3.3	51
143	Glucose selective Surface Plasmon Resonance-based bis-boronic acid sensor. Analyst, The, 2013, 138, 7140.	3.5	51
144	Metal–organic frameworks (MOFs) as host materials for the enhanced delivery of biomacromolecular therapeutics. Chemical Communications, 2021, 57, 12098-12110.	4.1	51

#	Article	IF	CITATIONS
145	Bioâ€Conjugated Advanced Materials for Targeted Disease Theranostics. Advanced Functional Materials, 2020, 30, 1907906.	14.9	51
146	The Development of a Continuous Intravascular Glucose Monitoring Sensor. Journal of Diabetes Science and Technology, 2015, 9, 751-761.	2.2	50
147	Synthesis and evaluation of a boronate-tagged 1,8-naphthalimide probe for fluoride recognition. Organic and Biomolecular Chemistry, 2015, 13, 4143-4148.	2.8	50
148	Sensing and antibacterial activity of imidazolium-based conjugated polydiacetylenes. Biosensors and Bioelectronics, 2016, 77, 1016-1019.	10.1	50
149	Protein encapsulation: a new approach for improving the capability of small-molecule fluorogenic probes. Chemical Science, 2020, 11, 1107-1113.	7.4	49
150	Determination of the absolute configuration of monosaccharides by a colour change in a chiral cholesteric liquid crystal system. Journal of the Chemical Society Chemical Communications, 1993, , 857.	2.0	48
151	Dynamic covalent self-assembled macrocycles prepared from 2-formyl-aryl-boronic acids and 1,2-amino alcohols. New Journal of Chemistry, 2009, 33, 181-185.	2.8	48
152	A Simple Protocol for NMR Analysis of the Enantiomeric Purity of Chiral Hydroxylamines. Organic Letters, 2013, 15, 860-863.	4.6	48
153	Ein glucosespezifischer molekularer Fluoreszenzsensor. Angewandte Chemie, 1994, 106, 2287-2289.	2.0	47
154	Cholesterol as a versatile platform for chiral recognition. Tetrahedron, 1995, 51, 555-566.	1.9	47
155	Chemoselective and enantioselective fluorescent recognition of sugar alcohols by a bisboronic acid receptor. Journal of Materials Chemistry, 2005, 15, 2896.	6.7	47
156	Selective Fluorescence Detection of Monosaccharides Using a Material Composite Formed between Graphene Oxide and Boronate-Based Receptors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10078-10082.	8.0	47
157	Photochromism and molecular logic gate operation of a water-compatible bis-glycosyl diarylethene. Chemical Communications, 2017, 53, 9494-9497.	4.1	47
158	â€~AND'-based fluorescence scaffold for the detection of ROS/RNS and a second analyte. Chemical Communications, 2018, 54, 8466-8469.	4.1	47
159	Reducing Valence States of Co Active Sites in a Singleâ€Atom Nanozyme for Boosted Tumor Therapy. Advanced Functional Materials, 2022, 32, .	14.9	47
160	Carbohydrate Receptors., 2005,, 45-109.		46
161	Boronic acid appended azo dyes–colour sensors for saccharidesElectronic supplementary information (ESI) available: absorption–pH titrations and absorption–saccharide titrations. See http://www.rsc.org/suppdata/p1/b1/b108896c/. Journal of the Chemical Society, Perkin Transactions 1, 2002 462-470.	1.3	45
162	Amine-triggered molecular capsules using dynamic boronate esterification. Chemical Communications, 2009, , 1682.	4.1	45

#	Article	IF	Citations
163	Ultrasmall Organic Nanoparticles with Aggregation-Induced Emission and Enhanced Quantum Yield for Fluorescence Cell Imaging. Analytical Chemistry, 2016, 88, 7853-7857.	6.5	45
164	Boronate affinity saccharide electrophoresis: A novel carbohydrate analysis tool. Electrophoresis, 2008, 29, 4185-4191.	2.4	44
165	"lrregular―aggregation-induced emission luminogens. Coordination Chemistry Reviews, 2020, 418, 213358.	18.8	44
166	Near-infrared fluorescent probe for hydrogen sulfide: high-fidelity ferroptosis evaluation <i>in vivo</i> during stroke. Chemical Science, 2022, 13, 2992-3001.	7.4	44
167	Sensor targets. Chemical Society Reviews, 2015, 44, 4176-4178.	38.1	43
168	Targeted multimodal theranostics via biorecognition controlled aggregation of metallic nanoparticle composites. Chemical Science, 2016, 7, 4004-4008.	7.4	43
169	Molecular design of sugar recognition systems by sugar-diboronic acid macro cyclization. Pure and Applied Chemistry, 1996, 68, 1207-1212.	1.9	42
170	Fluorescent Boron Bis(phenolate) with Association Response to Chloride and Dissociation Response to Fluoride. Inorganic Chemistry, 2008, 47, 6236-6244.	4.0	42
171	Enhanced fluorescence and chiral discrimination for tartaric acid in a dual fluorophore boronic acid receptor. Chemical Communications, 2005, , 1889.	4.1	41
172	Intramolecular cation–ĩ€ interactions control the conformation of nonrestricted (phenylalkyl)pyridines. Chemical Communications, 2008, , 1082.	4.1	41
173	Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker. Chemical Communications, 2010, 46, 8180.	4.1	41
174	Boronic acid based photoinduced electron transfer (PET) fluorescence sensors for saccharides. New Journal of Chemistry, 2010, 34, 2922.	2.8	41
175	Capturing intercellular sugar-mediated ligand-receptor recognitions via a simple yet highly biospecific interfacial system. Scientific Reports, 2013, 3, 2293.	3.3	41
176	Colorimetric and Plasmonic Detection of Lectins Using Coreâ€"Shell Gold Glyconanoparticles Prepared by Copper-Free Click Chemistry. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1874-1878.	8.0	41
177	Engineering a ratiometric fluorescent sensor membrane containing carbon dots for efficient fluoride detection and removal. Chemical Engineering Journal, 2020, 399, 125741.	12.7	41
178	6,6′-Bis-substituted BINOL boronic acids as enantioselective and chemoselective fluorescent chemosensors for d-sorbitol. Tetrahedron, 2008, 64, 1309-1315.	1.9	40
179	Induced Helical Chirality of Perylenebisimide Aggregates Allows for Enantiopurity Determination and Differentiation of αâ€Hydroxy Carboxylates by Using Circular Dichroism. Chemistry - A European Journal, 2014, 20, 11793-11799.	3.3	40
180	Tuning saccharide selectivity in modular fluorescent sensors. Tetrahedron Letters, 2003, 44, 4789-4792.	1.4	39

#	Article	IF	Citations
181	Probing disaccharide selectivity with modular fluorescent sensors. Tetrahedron Letters, 2004, 45, 1539-1542.	1.4	39
182	Solidâ€State Structures and Solution Analyses of a Phenylpropylpyridine <i>N</i> â€Oxide and an <i>N</i> â€Methyl Phenylpropylpyridine. Chemistry - an Asian Journal, 2009, 4, 194-198.	3.3	39
183	Functionalized Carbon Nanoparticles, Blacks and Soots as Electronâ€Transfer Building Blocks and Conduits. Chemistry - an Asian Journal, 2014, 9, 1226-1241.	3.3	39
184	Imaging agents. Chemical Society Reviews, 2015, 44, 4484-4486.	38.1	39
185	A fluorescent ESIPT-based benzimidazole platform for the ratiometric two-photon imaging of ONOO ^{â^^} <i>in vitro</i> and <i>ex vivo</i> . Chemical Science, 2020, 11, 7329-7334.	7.4	39
186	Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer's disease. Coordination Chemistry Reviews, 2021, 427, 213553.	18.8	39
187	Self-assembling fluorescent hydrogel for highly efficient water purification and photothermal conversion. Chemical Engineering Journal, 2022, 431, 134245.	12.7	39
188	Two Dimensional Photoinduced Electron Transfer (PET) Fluorescence Sensor for Saccharides. Chemistry Letters, 1995, 24, 503-504.	1.3	37
189	Boronic aciddendrimerreceptor modified nanofibrillar cellulose membranes. Journal of Materials Chemistry, 2010, 20, 588-594.	6.7	37
190	Coenzymeâ€Q Functionalized CdTe/ZnS Quantum Dots for Reactive Oxygen Species (ROS) Imaging. Chemistry - A European Journal, 2011, 17, 5262-5271.	3.3	37
191	Simultaneous determination of Hg(II) and Zn(II) using a GFP inspired chromophore. Talanta, 2012, 100, 401-404.	5.5	37
192	Dual-function cellulose composites for fluorescence detection and removal of fluoride. Dyes and Pigments, 2018, 149, 669-675.	3.7	37
193	Fluorescent probes for bioactive detection and imaging of phase II metabolic enzymes. Coordination Chemistry Reviews, 2019, 399, 213026.	18.8	37
194	Two-photon ESIPT-based fluorescent probe using 4-hydroxyisoindoline-1,3-dione for the detection of peroxynitrite. Chemical Communications, 2021, 57, 11084-11087.	4.1	37
195	Macrophage Migration Inhibitory Factor is subjected to glucose modification and oxidation in Alzheimer's Disease. Scientific Reports, 2017, 7, 42874.	3.3	36
196	Low-dimensional nanomaterials for antibacterial applications. Journal of Materials Chemistry B, 2021, 9, 3640-3661.	5.8	36
197	Fluorescence-Based Tool To Detect Endogenous Peroxynitrite in M1-Polarized Murine J774.2 Macrophages. Analytical Chemistry, 2018, 90, 10621-10627.	6.5	35
198	A diboronic acid â€~glucose cleft' and a biscrown ether â€~metal sandwich' are allosterically coupled. Journal of the Chemical Society Chemical Communications, 1995, , 1483-1485.	2.0	34

#	Article	IF	CITATIONS
199	Simple chiral derivatisation protocols for NMR analysis of the enantiopurity of 1,2-diphenylethane-1,2-diamine and N-Boc-cyclohexane-1,2-diamine. Tetrahedron: Asymmetry, 2008, 19, 489-494.	1.8	34
200	Receptor-targeting fluorescence imaging and theranostics using a graphene oxide based supramolecular glycocomposite. Journal of Materials Chemistry B, 2015, 3, 9182-9185.	5.8	33
201	A Molecularâ€Splicing Strategy for Constructing a Nearâ€Infrared Fluorescent Probe for UDPâ€Glucuronosyltransferase 1A1. Angewandte Chemie - International Edition, 2021, 60, 24566-24572.	13.8	33
202	A general strategy for selective detection of hypochlorous acid based on triazolopyridine formation. Chinese Chemical Letters, 2020, 31, 2917-2920.	9.0	33
203	Selective Fluorescence Signalling of Saccharides in Their Furanose Form. Chemistry Letters, 1998, 27, 883-884.	1.3	32
204	A d -glucose selective fluorescent internal charge transfer (ICT) sensor. Tetrahedron Letters, 2002, 43, 911-913.	1.4	32
205	Synthesis of Amines with Pendant Boronic Esters by Borrowing Hydrogen Catalysis. Organic Letters, 2013, 15, 4850-4853.	4.6	32
206	Toward Fluorescenceâ€Based Highâ€Throughput Screening for Enantiomeric Excess in Amines and Amino Acid Derivatives. Chemistry - A European Journal, 2016, 22, 10074-10080.	3.3	32
207	Foldable glycoprobes capable of fluorogenic crosslinking of biomacromolecules. Chemical Science, 2016, 7, 6325-6329.	7.4	32
208	Highâ€Throughput Assay for Enantiomeric Excess Determination in 1,2―and 1,3â€Diols and Direct Asymmetric Reaction Screening. Chemistry - A European Journal, 2017, 23, 10222-10229.	3.3	32
209	A bodipy based hydroxylamine sensor. Chemical Communications, 2017, 53, 10441-10443.	4.1	32
210	Lysosomal tracking with a cationic naphthalimide using multiphoton fluorescence lifetime imaging microscopy. Chemical Communications, 2017, 53, 11161-11164.	4.1	32
211	Highly Selective Fluoride Ion Detection Based on a Fluorescent Alizarin–o-Aminomethylphenylboronic Acid Ensemble in Aqueous MeOH Solution. Chemistry Letters, 2006, 35, 996-997.	1.3	31
212	Fluorescence Sensing with Celluloseâ€Based Materials. ChemistryOpen, 2017, 6, 685-696.	1.9	31
213	NAG-targeting fluorescence based probe for precision diagnosis of kidney injury. Chemical Communications, 2019, 55, 1955-1958.	4.1	31
214	Analysis of extracellular vesicles as emerging theranostic nanoplatforms. Coordination Chemistry Reviews, 2020, 424, 213506.	18.8	31
215	Organic/inorganic supramolecular nano-systems based on host/guest interactions. Coordination Chemistry Reviews, 2021, 428, 213609.	18.8	31
216	Structural and Thermodynamic Analysis of a Three-Component Assembly Forming <i>ortho</i> -lminophenylboronate Esters. Journal of Organic Chemistry, 2016, 81, 8319-8330.	3.2	30

#	Article	IF	CITATIONS
217	Boronateâ€Based Fluorescence Probes for the Detection of Hydrogen Peroxide. ChemistryOpen, 2018, 7, 262-265.	1.9	30
218	Long Wavelength TCF-Based Fluorescent Probe for the Detection of Alkaline Phosphatase in Live Cells. Frontiers in Chemistry, 2019, 7, 255.	3.6	30
219	Asymmetric Strecker Synthesis of α-Arylglycines. Journal of Organic Chemistry, 2011, 76, 6038-6047.	3.2	29
220	Determination of Enantiomeric Excess in Amine Derivatives with Molecular Selfâ€Assemblies. Angewandte Chemie, 2015, 127, 7236-7239.	2.0	29
221	Boronic Acid Mediated Coupling of Catechols and $\langle i \rangle N \langle i \rangle$ -Hydroxylamines: A Bioorthogonal Reaction to Label Peptides. Organic Letters, 2017, 19, 3179-3182.	4.6	29
222	ESIPT-based fluorescence probe for the ratiometric detection of superoxide. New Journal of Chemistry, 2019, 43, 2875-2877.	2.8	29
223	A ratiometric fluorescent hydrogel of controlled thickness prepared continuously using microtomy for the detection and removal of Hg(II). Chemical Engineering Journal, 2021, 426, 131296.	12.7	29
224	Non-linear effects operate and dynamic ligand exchange occurs when chiral BINOL–boron Lewis acids are used for asymmetric catalysis. Tetrahedron: Asymmetry, 2003, 14, 1965-1968.	1.8	28
225	Boronic acid-facilitated \hat{l}_{\pm} -hydroxy-carboxylate anion transfer at liquid/liquid electrode systems: the EICrev mechanism. Journal of Solid State Electrochemistry, 2009, 13, 1475-1482.	2.5	28
226	A simple chiral derivatisation protocol for 1H NMR spectroscopic analysis of the enantiopurity of O-silyl-1,2-amino alcohols. Tetrahedron Letters, 2009, 50, 876-879.	1.4	28
227	Selective Saccharide Recognition Using Modular Diboronic Acid Fluorescent Sensors. European Journal of Organic Chemistry, 2012, 2012, 1223-1229.	2.4	28
228	A Waterâ€Soluble Copper(II) Complex for the Selective Fluorescence Detection of Nitric Oxide/Nitroxyl and Imaging in Living Cells. ChemPlusChem, 2016, 81, 30-34.	2.8	28
229	A practical graphitic carbon nitride (g-C3N4) based fluorescence sensor for the competitive detection of trithiocyanuric acid and mercury ions. Dyes and Pigments, 2019, 170, 107476.	3.7	28
230	A Colorimetric Chemosensor Based on a Nozoe Azulene That Detects Fluoride in Aqueous/Alcoholic Media. Frontiers in Chemistry, 2020, 8, 10.	3.6	28
231	Sustainable Afterglow Roomâ€Temperature Phosphorescence Emission Materials Generated Using Natural Phenolics. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
232	Simultaneous tracking of autophagy and oxidative stress during stroke with an ICT-TBET integrated ratiometric two-photon platform. Chemical Science, 2022, 13, 5363-5373.	7.4	28
233	A surface plasmon enhanced fluorescence sensor platform. New Journal of Chemistry, 2009, 33, 1466.	2.8	27
234	A boronic acid-based fluorescent hydrogel for monosaccharide detection. Frontiers of Chemical Science and Engineering, 2020, 14, 112-116.	4.4	27

#	Article	IF	Citations
235	Biomimetic ion transport: Synthesis and activity of an amphotericin mimic. Tetrahedron Letters, 1990, 31, 1233-1236.	1.4	26
236	Hierarchical carbon nanotube assemblies created by sugar–boric or boronic acid interactions. Chemical Communications, 2008, , 4478.	4.1	26
237	Diol Appended Quenchers for Fluorescein Boronic Acid. Chemistry - an Asian Journal, 2010, 5, 581-588.	3.3	26
238	Dipeptide hydrogel formation triggered by boronic acid–sugar recognition. Soft Matter, 2012, 8, 6788.	2.7	26
239	A simple and effective colorimetric technique for the detection of boronic acids and their derivatives. Analytical Methods, 2012, 4, 2215.	2.7	26
240	A fluorogenic 2D glycosheet for the simultaneous identification of human- and avian-receptor specificity in influenza viruses. Materials Horizons, 2017, 4, 431-436.	12.2	26
241	Pinkment: a synthetic platform for the development of fluorescent probes for diagnostic and theranostic applications. Chemical Science, 2020, 11, 8567-8571.	7.4	26
242	Imaging strategies using cyanine probes and materials for biomedical visualization of live animals. Coordination Chemistry Reviews, 2021, 447, 214134.	18.8	26
243	Polymerisation resistant synthesis of methacrylamido phenylboronic acids. Polymer, 2008, 49, 3362-3365.	3.8	25
244	3D cross-correlative matrix temperature detection and non-invasive thermal mapping based on a molecular probe. Chemical Science, 2014, 5, 4388-4393.	7.4	25
245	Reaction-based indicator displacement assay (RIA) for the colorimetric and fluorometric detection of hydrogen peroxide. Organic Chemistry Frontiers, 2017, 4, 1058-1062.	4.5	25
246	Fluorescent probes for the detection and imaging of Cytochrome P450. Coordination Chemistry Reviews, 2021, 437, 213740.	18.8	25
247	A Molecular Colour Sensor for Fluoride. Chemistry Letters, 2001, 30, 406-407.	1.3	24
248	Hydrothermal Conversion of One-Photon-Fluorescent Poly(4-vinylpyridine) into Two-Photon-Fluorescent Carbon Nanodots. Langmuir, 2014, 30, 11746-11752.	3.5	24
249	Biodegradable macroporous scaffold with nano-crystal surface microstructure for highly effective osteogenesis and vascularization. Journal of Materials Chemistry B, 2018, 6, 1658-1667.	5.8	24
250	Proline-Based Boronic Acid Receptors for Chiral Recognition of Glucose. Journal of Organic Chemistry, 2018, 83, 15128-15135.	3.2	24
251	Preferential Colonization of Osteoblasts Over Co-cultured Bacteria on a Bifunctional Biomaterial Surface. Frontiers in Microbiology, 2018, 9, 2219.	3.5	24
252	Ratiometric fluorescent probe for sensing <i>Streptococcus mutans</i> glucosyltransferase, a key factor in the formation of dental caries. Chemical Communications, 2019, 55, 3548-3551.	4.1	24

#	Article	IF	Citations
253	Stress response decay with aging visualized using a dual-channel logic-based fluorescent probe. Chemical Science, 2021, 12, 13483-13491.	7.4	24
254	Green Fluorescent Protein GFP-Chromophore-Based Probe for the Detection of Mitochondrial Viscosity in Living Cells. ACS Applied Bio Materials, 2021, 4, 2128-2134.	4.6	24
255	Design and Synthesis of Artificial Ion Channels. Synlett, 1993, 1993, 449-460.	1.8	23
256	Saccharide-accelerated hydrolysis of boronic acid imines. New Journal of Chemistry, 2002, 26, 1228-1237.	2.8	23
257	Reversible electrochemical modulation of fluorescence and selective sensing of ascorbic acid using a DCIP-CA-CdTe QD system. Analyst, The, 2012, 137, 1094.	3.5	23
258	Promoting magnesium sulfite oxidation <i>via</i> partly oxidized metal nanoparticles on graphitic carbon nitride (g-C ₃ N ₄) in the magnesia desulfurization process. Journal of Materials Chemistry A, 2018, 6, 11296-11305.	10.3	23
259	A fluorogenic probe for tracking GSH flux in developing neurons. Chemical Communications, 2020, 56, 515-518.	4.1	23
260	High-throughput assay for determining enantiomeric excess of chiral diols, amino alcohols, and amines and for direct asymmetric reaction screening. Nature Protocols, 2020, 15, 2203-2229.	12.0	23
261	Efficient Anion Binding to Cerium(IV) Bis(porphyrinate) Double Decker Utilizing Positive Homotropic Allosterism. Chemistry Letters, 2001, 30, 520-521.	1.3	22
262	Carbon Nanoparticle Surface Electrochemistry: Highâ€Density Covalent Immobilisation and Poreâ€Reactivity of 9,10â€Anthraquinone. Electroanalysis, 2011, 23, 1320-1324.	2.9	22
263	Behavior of Supramolecular Assemblies of Radiometal-Filled and Fluorescent Carbon Nanocapsules InÂVitro and InÂVivo. CheM, 2017, 3, 437-460.	11.7	22
264	Protein Encapsulation: A Nanocarrier Approach to the Fluorescence Imaging of an Enzyme-Based Biomarker. Frontiers in Chemistry, 2020, 8, 389.	3.6	22
265	Supramolecular fluorogenic peptide sensor array based on graphene oxide for the differential sensing of ebola virus. Chemical Communications, 2020, 56, 5735-5738.	4.1	22
266	"Click-fluors― triazole-linked saccharide sensors. Organic Chemistry Frontiers, 2016, 3, 918-928.	4.5	21
267	Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS ₂ and graphene oxide. Chemical Communications, 2016, 52, 9418-9421.	4.1	21
268	Supramolecular core–glycoshell polythiophene nanodots for targeted imaging and photodynamic therapy. Chemical Communications, 2017, 53, 9793-9796.	4.1	21
269	A simple, azulene-based colorimetric probe for the detection of nitrite in water. Frontiers of Chemical Science and Engineering, 2020, 14, 90-96.	4.4	21
270	A glycoconjugate-based gold nanoparticle approach for the targeted treatment of <i>Pseudomonas aeruginosa</i> biofilms. Nanoscale, 2020, 12, 23234-23240.	5.6	21

#	Article	IF	Citations
271	Colorimetric detection of Hg ²⁺ with an azulene-containing chemodosimeter <i>via</i> dithioacetal hydrolysis. Analyst, The, 2020, 145, 6262-6269.	3.5	21
272	Sustainable afterglow materials from lignin inspired by wood phosphorescence. Cell Reports Physical Science, 2021, 2, 100542.	5.6	21
273	Chiral discrimination of monosaccharides by monolayers of a steroidal boronic acid. Journal of the Chemical Society Perkin Transactions II, 1994, , 697.	0.9	20
274	Molecular Fluorescence Sensor for Saccharides Based on Amino Coumarin. Chemistry Letters, 1995, 24, 139-140.	1.3	20
275	A sweet toothed saccharide (PET) sensor. Tetrahedron Letters, 1995, 36, 8833-8834.	1.4	20
276	The synthesis and properties of a calixarene-based  sugar bowl'. Journal of the Chemical Society Chemical Communications, 1995, , 1997-1998.	2.0	20
277	Saccharide accelerated hydrolysis of boronic acid imines. Tetrahedron Letters, 1999, 40, 2597-2600.	1.4	20
278	Substituent and Solvent Effects on the Reactions of Organoboronic Acids with Fluoride. Bulletin of the Chemical Society of Japan, 2001, 74, 509-510.	3.2	20
279	A practical synthesis of enantiopure (S)-4-(4-hydroxybenzyl)-oxazolidin-2-one. Tetrahedron: Asymmetry, 2003, 14, 2619-2623.	1.8	20
280	Biotinylated boronic acid fluorophore conjugates: Quencher elimination strategy for imaging and saccharide detection. RSC Advances, 2012, 2, 3274.	3.6	20
281	Selective electrochemiluminescent sensing of saccharides using boronic acid-modified coreactant. Chemical Communications, 2016, 52, 12845-12848.	4.1	20
282	Rapid Determination of Enantiomeric Excess via NMR Spectroscopy: A Research-Informed Experiment. Journal of Chemical Education, 2017, 94, 79-84.	2.3	20
283	Exploitation of a novel â€~on–off' photoinduced electron-transfer (PET) sensor against conventional â€~off–on' PET sensorsâ€. Chemical Communications, 1999, , 2011-2012.	4.1	19
284	Boronate ester cross-linked PVA hydrogels for the capture and H ₂ O ₂ -mediated release of active fluorophores. Chemical Communications, 2020, 56, 5516-5519.	4.1	19
285	The Bull-James assembly: Efficient iminoboronate complex formation for chiral derivatization and supramolecular assembly. Coordination Chemistry Reviews, 2021, 428, 213599.	18.8	19
286	Highly sensitive and selective water-soluble fluorescent probe for the detection of formaldehyde in leather products. Dyes and Pigments, 2021, 188, 109175.	3.7	19
287	Rational Design of a Twoâ€Photon Fluorescent Probe for Human Cytochromeâ€P450 3A and the Visualization of Mechanismâ€Based Inactivation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
288	A Computational Characterization of Boronâ^'Oxygen Multiple Bonding in HNâ•€Hâ^'CHâ•€Hâ^'NHâ^'BO. Journal of Physical Chemistry A, 2008, 112, 8446-8454.	2.5	18

#	Article	IF	Citations
289	A Ditopic Fluorescence Sensor for Saccharides and Mercury Based on a Boronicâ€Acid Receptor and Desulfurisation Reaction. Chemistry - an Asian Journal, 2011, 6, 3054-3058.	3.3	18
290	Pyrene-anchored boronic acid receptors on carbon nanoparticle supports: fluxionality and pore effects. New Journal of Chemistry, 2013, 37, 1883.	2.8	18
291	Analysis of protein glycation using fluorescent phenylboronate gel electrophoresis. Scientific Reports, 2013, 3, 1437.	3.3	18
292	A novel colorimetric assay for \hat{l}_{\pm} -methylacyl-CoA racemase 1A (AMACR; P504S) utilizing the elimination of 2,4-dinitrophenolate. Chemical Communications, 2017, 53, 5087-5090.	4.1	18
293	A molecular-logic gate for COX-2 and NAT based on conformational and structural changes: visualizing the progression of liver disease. Chemical Science, 2020, 11, 6209-6216.	7.4	18
294	Enhanced Colorimetric Differentiation between <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> Using a Shape-Encoded Sensor Hydrogel. ACS Applied Bio Materials, 2020, 3, 4398-4407.	4.6	17
295	The first fluorescent sensor for boronic and boric acids with sensitivity at sub-micromolar concentrationsâ€"a cautionary tale. Chemical Communications, 2001, , 2018-2019.	4.1	16
296	A competition assay for diols using 9-(N,N-diethanolaminomethyl)anthracene and phenylboronic acid. Tetrahedron Letters, 2002, 43, 507-509.	1.4	16
297	Well-controlled synthesis of boronic-acid functionalised poly(lactide)s: a versatile platform for biocompatible polymer conjugates and sensors. RSC Advances, 2012, 2, 5954.	3.6	16
298	A glutamic acid-modified cellulose fibrous composite used for the adsorption of heavy metal ions from single and binary solutions. Materials Chemistry Frontiers, 2017, 1, 2317-2323.	5.9	16
299	Graphene nanoribbon-based supramolecular ensembles with dual-receptor targeting function for targeted photothermal tumor therapy. Chemical Science, 2021, 12, 11089-11097.	7.4	16
300	Recent progresses and remaining challenges for the detection of Zika virus. Medicinal Research Reviews, 2021, 41, 2039-2108.	10.5	16
301	Benzothiazolium Derivative-Capped Silica Nanocomposites for β-Amyloid Imaging <i>In Vivo</i> Analytical Chemistry, 2021, 93, 12617-12627.	6.5	16
302	â€~Tailored' polymers for supported syntheses using boronic acids. Tetrahedron Letters, 2000, 41, 10291-10294.	1.4	15
303	Colorimetric enantioselective recognition of chiral secondary alcohols via hydrogen bonding to a chiral metallocene containing chemosensor. Chemical Communications, 2013, 49, 8314.	4.1	15
304	A Leucine Aminopeptidase-Activated Theranostic Prodrug for Cancer Diagnosis and Chemotherapy. ACS Applied Bio Materials, 2019, 2, 4904-4910.	4.6	15
305	Azulenes with aryl substituents bearing pentafluorosulfanyl groups: synthesis, spectroscopic and halochromic properties. New Journal of Chemistry, 2019, 43, 992-1000.	2.8	15
306	Dual enzyme activated fluorescein based fluorescent probe. Frontiers of Chemical Science and Engineering, 2020, 14, 117-121.	4.4	15

#	Article	IF	Citations
307	Sensing Peroxynitrite in Different Organelles of Murine RAW264.7 Macrophages With Coumarin-Based Fluorescent Probes. Frontiers in Chemistry, 2020, 8, 39.	3. 6	15
308	Long-Wavelength AIE-Based Fluorescent Probes for Mitochondria-Targeted Imaging and Photodynamic Therapy of Hepatoma Cells. ACS Applied Bio Materials, 2021, 4, 7016-7024.	4.6	15
309	Fluorescent Chemosensors for Ion and Molecule Recognition: The Next Chapter. Frontiers in Sensors, 2021, 2, .	3.3	15
310	Boronic Acid-Based Receptors and Sensors for Saccharides. , 2006, , 441-479.		14
311	A Protocol for NMR Analysis of the Enantiomeric Excess of Chiral Diols Using an Achiral Diboronic Acid Template. Journal of Organic Chemistry, 2016, 81, 6795-6799.	3.2	14
312	Specialty Grand Challenges in Supramolecular Chemistry. Frontiers in Chemistry, 2017, 5, 83.	3.6	14
313	Osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold in the treatment of large bone defects. Journal of Materials Chemistry B, 2018, 6, 4197-4204.	5.8	14
314	A Simple Nearâ€Infrared Fluorescent Probe for the Detection of Peroxynitrite. ChemistryOpen, 2019, 8, 1407-1409.	1.9	14
315	Coumarin-based fluorescent probe for the rapid detection of peroxynitrite  AND' biological thiols. RSC Advances, 2020, 10, 13496-13499.	3.6	14
316	Visualization of penicillin G acylase in bacteria and high-throughput screening of natural inhibitors using a ratiometric fluorescent probe. Chemical Communications, 2020, 56, 4640-4643.	4.1	14
317	TCF-ALP: a fluorescent probe for the selective detection of Staphylococcus bacteria and application in "smart―wound dressings. Biomaterials Science, 2021, 9, 4433-4439.	5.4	14
318	A supramolecular pyrenyl glycoside-coated 2D MoS ₂ composite electrode for selective cell capture. Chemical Communications, 2016, 52, 11689-11692.	4.1	13
319	Targeted tumor detection: guidelines for developing biotinylated diagnostics. Chemical Communications, 2017, 53, 2154-2157.	4.1	13
320	A 1-hydroxy-2,3,1-benzodiazaborine-containing π-conjugated system: Synthesis, optical properties and solvent-dependent response toward anions. Tetrahedron, 2017, 73, 2053-2061.	1.9	13
321	A simple umbelliferone based fluorescent probe for the detection of nitroreductase. Frontiers of Chemical Science and Engineering, 2018, 12, 311-314.	4.4	13
322	A far-red fluorescent probe for sensing laccase in fungi and its application in developing an effective biocatalyst for the biosynthesis of antituberculous dicoumarin. Chemical Communications, 2019, 55, 3951-3954.	4.1	13
323	The Evaluation of Ester Functionalised TCFâ∈Based Fluorescent Probes for the Detection of Bacterial Species. Israel Journal of Chemistry, 2021, 61, 234-238.	2.3	13
324	Alkylation of tricarbonyliron complexes by trimethylsilyl cyanide: synthetic and kinetic studies. Journal of the Chemical Society Dalton Transactions, 1987, , 2013.	1.1	12

#	Article	IF	CITATIONS
325	Self and directed assembly: people and molecules. Beilstein Journal of Organic Chemistry, 2016, 12, 391-405.	2.2	12
326	Solar-driven broad spectrum fungicides based on monodispersed Cu ₇ S ₄ nanorods with strong near-infrared photothermal efficiency. RSC Advances, 2016, 6, 103930-103937.	3.6	12
327	Supramolecular Polymer Dot Ensemble for Ratiometric Detection of Lectins and Targeted Delivery of Imaging Agents. ACS Applied Materials & Interfaces, 2017, 9, 3272-3276.	8.0	12
328	A naphthoimidazolium-cholesterol derivative as a ratiometric fluorescence based chemosensor for the chiral recognition of carboxylates. Chemical Communications, 2018, 54, 13264-13267.	4.1	12
329	Reaction-based indicator displacement assay (RIA) for the development of a triggered release system capable of biofilm inhibition. Chemical Communications, 2019, 55, 15129-15132.	4.1	12
330	Visual High-Throughput Screening for Developing a Fatty Acid Amide Hydrolase Natural Inhibitor Based on an Enzyme-Activated Fluorescent Probe. Analytical Chemistry, 2020, 92, 9493-9500.	6.5	12
331	Fluorescent probes and functional materials for biomedical applications. Frontiers of Chemical Science and Engineering, 2022, 16, 1425-1437.	4.4	12
332	Dioctylamineâ€Sulfonamideâ€Modified Carbon Nanoparticles as High Surface Area Substrates for Coenzyme Q10Lipid Electrochemistry. Electroanalysis, 2012, 24, 1003-1010.	2.9	11
333	Oil Water Interfacial Phosphate Transfer Facilitated by Boronic Acid: Observation of Unusually Fast Oil Water Lateral Charge Transport. ChemElectroChem, 2014, 1, 1640-1646.	3.4	11
334	Supramolecular glyco-poly-cyclodextrin functionalized thin-layer manganese dioxide for targeted stimulus-responsive bioimaging. Chemical Communications, 2018, 54, 4037-4040.	4.1	11
335	Identification of novel small-molecule inhibitors of $\hat{l}\pm$ -methylacyl-CoA racemase (AMACR; P504S) and structure-activity relationships. Bioorganic Chemistry, 2019, 92, 103264.	4.1	11
336	Peroxynitrite Activated Drug Conjugate Systems Based on a Coumarin Scaffold Toward the Application of Theranostics. Frontiers in Chemistry, 2019, 7, 775.	3.6	11
337	Mechanistic insights into the novel glucose-sensitive behavior of P(NIPAM-co-2-AAPBA). Science China Chemistry, 2020, 63, 377-385.	8.2	11
338	Activity-Based Sensing: Achieving Chemical Selectivity through Chemical Reactivity. Accounts of Chemical Research, 2020, 53, 1-1.	15.6	11
339	A practical strategy to develop isoform-selective near-infrared fluorescent probes for human cytochrome P450 enzymes. Acta Pharmaceutica Sinica B, 2022, 12, 1976-1986.	12.0	11
340	Microwave-electrochemical formation of colloidal zinc oxide at fluorine doped tin oxide electrodes. Electrochimica Acta, 2010, 55, 7909-7915.	5.2	10
341	Synthesis of a Highly Hydrophobic Cationic Lipid and Structural and Thermodynamic Studies for Interaction with DNA. Bulletin of the Chemical Society of Japan, 2010, 83, 1010-1018.	3.2	10
342	N,N-Butyl-decamethylferrocenyl-amine reactivity at liquid liquid interfaces: electrochemically driven anion transfer vs. pH driven proton transfer. New Journal of Chemistry, 2010, 34, 1261.	2.8	10

#	Article	IF	Citations
343	Liquid liquid electrochemical bicarbonate and carbonate capture facilitated by boronic acids. Chemical Communications, 2011, 47, 12002.	4.1	10
344	A study on the AMACR catalysed elimination reaction and its application to inhibitor testing. Organic and Biomolecular Chemistry, 2016, 14, 612-622.	2.8	10
345	Electroanalysis in 2Dâ€∓iO ₂ Nanosheet Hosts: Electrolyte and Selectivity Effects in Ferroceneboronic Acid – Saccharide Binding. Electroanalysis, 2018, 30, 1303-1310.	2.9	10
346	Azulene-based fluorescent chemosensor for adenosine diphosphate. Chemical Communications, 2021, 57, 10608-10611.	4.1	10
347	Versatile Ratiometric Fluorescent Probe Based on the Two-Isophorone Fluorophore for Sensing Nitroxyl. Industrial & Description of the Property Research, 2021, 60, 15913-15920.	3.7	10
348	mtDNA-Specific Ultrasensitive Near-Infrared Fluorescent Probe Enables the Differentiation of Healthy and Apoptotic Cells. Analytical Chemistry, 2022, 94, 7510-7519.	6.5	10
349	Electrocatalytic Determination of Sulfite at Immobilized Microdroplet Liquid Liquid Interfaces: The EIC′ Mechanism. Electroanalysis, 2008, 20, 469-475.	2.9	9
350	Screening of arylboronic acids to search for a strong inhibitor for î³â€glutamyl transpeptidase (γâ€GTP). Recueil Des Travaux Chimiques Des Pays-Bas, 1996, 115, 44-48.	0.0	9
351	Surface-dopylated carbon nanoparticles sense gas-induced pH changes. Sensors and Actuators B: Chemical, 2012, 161, 184-190.	7.8	9
352	Suzuki homo-coupling reaction based fluorescent sensors for monosaccharides. RSC Advances, 2014, 4, 35238.	3.6	9
353	Dye Displacement Assay for Saccharides using Benzoxaborole Hydrogels. ChemistryOpen, 2018, 7, 266-268.	1.9	9
354	Coumarin-based fluorescent  AND' logic gate probes for the detection of homocysteine and a chosen biological analyte. RSC Advances, 2019, 9, 26425-26428.	3.6	9
355	Novel 2-arylthiopropanoyl-CoA inhibitors of \hat{l}_{\pm} -methylacyl-CoA racemase 1A (AMACR; P504S) as potential anti-prostate cancer agents. Bioorganic Chemistry, 2019, 92, 103263.	4.1	9
356	Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chemical Society Reviews, 2021, 50, 5952-5984.	38.1	9
357	Nanococktail Based on Supramolecular Glyco-Assembly for Eradicating Tumors <i>In Vivo</i> Applied Materials & Description of the Applied	8.0	9
358	Field-effect saccharide sensing using AlGaN/GaN heterostructures and boronic acid based chemical receptors. Sensors and Actuators B: Chemical, 2011, 160, 1078-1081.	7.8	8
359	Coil-by-coil assembly of poly[acrylamide-co-3-(methacryl-amido)-phenylboronic acid] with polydiallyldimethyl-ammonium to give alizarin red S responsive films. Journal of Materials Chemistry, 2012, 22, 18999.	6.7	8
360	Structure-activity relationships of rationally designed AMACR 1A inhibitors. Bioorganic Chemistry, 2018, 79, 145-154.	4.1	8

#	Article	IF	Citations
361	Target Enzymeâ€Activated Twoâ€Photon Fluorescent Probes: A Case Study of CYP3A4 Using a Twoâ€Dimensional Design Strategy. Angewandte Chemie, 2019, 131, 10064-10068.	2.0	8
362	Multiphoton fluorescence lifetime imaging microscopy (FLIM) and super-resolution fluorescence imaging with a supramolecular biopolymer for the controlled tagging of polysaccharides. Nanoscale, 2019, 11, 9498-9507.	5.6	8
363	A Three-Component Derivatization Protocol for Determining the Enantiopurity of Sulfinamides by 1H and 19F NMR Spectroscopy. Journal of Organic Chemistry, 2020, 85, 1208-1215.	3.2	8
364	Activation and Monitoring of mtDNA Damage in Cancer Cells via the "Proton-Triggered― Decomposition of an Ultrathin Nanosheet. ACS Applied Materials & mp; Interfaces, 2021, 13, 3669-3678.	8.0	8
365	Graphene oxide-enhanced cytoskeleton imaging and mitosis tracking. Chemical Communications, 2017, 53, 3373-3376.	4.1	7
366	Fluorescence imaging of a potential diagnostic biomarker for breast cancer cells using a peptide-functionalized fluorogenic 2D material. Chemical Communications, 2019, 55, 13235-13238.	4.1	7
367	2D Strategy for the Construction of an Enzyme-Activated NIR Fluorophore Suitable for the Visual Sensing and Profiling of Homologous Nitroreductases from Various Bacterial Species. ACS Sensors, 2021, 6, 3348-3356.	7.8	7
368	Amphiphilic engineering of reduced graphene oxides using a carbon nitride coating for superior removal of organic pollutants from wastewater. Carbon, 2021, 184, 479-491.	10.3	7
369	Sustainable Afterglow Roomâ€Temperature Phosphorescence Emission Materials Generated Using Natural Phenolics. Angewandte Chemie, 2022, 134, .	2.0	7
370	A spiropyran with low pKa for tracking DNA G-quadruplexes and revealing the dissipation of Î"Î"m with senescence using an in-situ switching strategy. Sensors and Actuators B: Chemical, 2022, 359, 131618.	7.8	7
371	Analysis of Protein Glycation Using Phenylboronate Acrylamide Gel Electrophoresis. Methods in Molecular Biology, 2012, 869, 93-109.	0.9	6
372	"Hydrothermal wrapping―with poly(4-vinylpyridine) introduces functionality: pH-sensitive core–shell carbon nanomaterials. Journal of Materials Chemistry A, 2013, 1, 4559.	10.3	6
373	Ferroceneâ€Boronic Acid–Fructose Binding Based on Dualâ€Plate Generator–Collector Voltammetry and Squareâ€Wave Voltammetry. ChemElectroChem, 2015, 2, 867-871.	3.4	6
374	Low-dimensional materials facilitate the conjugation between fluorogenic boronic acids and saccharides. Materials Chemistry Frontiers, 2017, 1, 61-64.	5.9	6
375	C4-aldehyde of guaiazulene: synthesis and derivatisation. Organic and Biomolecular Chemistry, 2021, 19, 2502-2511.	2.8	6
376	Twoâ€Dimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence. Angewandte Chemie, 2021, 133, 10851-10860.	2.0	6
377	Dual-factor Synergistically Activated ESIPT-based Probe: Differential Fluorescence Signals to Simultaneously Detect $\hat{1}\pm$ -Naphthyl Acetate and Acid $\hat{1}\pm$ -Naphthyl Acetate Esterase. Analytical Chemistry, 2021, 93, 14471-14480.	6.5	6
378	Visual identification of gut bacteria and determination of natural inhibitors using a fluorescent probe selective for PGP-1. Analytica Chimica Acta, 2022, 1191, 339280.	5.4	6

#	Article	IF	Citations
379	Targeted delivery of maytansine to liver cancer cells <i>via</i> galactose-modified supramolecular two-dimensional glycomaterial. Chemical Communications, 2022, 58, 5029-5032.	4.1	6
380	A fluorescent peptidyl substrate for visualizing peptidyl-prolyl cis/trans isomerase activity in live cells. Chemical Communications, 2018, 54, 1857-1860.	4.1	5
381	Mechanistic insights into the origin of substituent-directed product Z–E selectivity for gold-catalyzed [4+1]-annulations of 1,4-diyn-3-ols with isoxazoles: A DFT study. Molecular Catalysis, 2020, 480, 110647.	2.0	5
382	Colorimetric assay for the rapid determination of free-base nicotine in e-liquid. Analytical Methods, 2020, 12, 193-199.	2.7	5
383	Azulenesulfonium and azulenebis(sulfonium) salts: Formation by interrupted Pummerer reaction and subsequent derivatisation by nucleophiles. Tetrahedron, 2020, 76, 131700.	1.9	5
384	Theoretical evaluation of the carbene-based site-selectivity in gold(<scp>iii</scp>)-catalyzed annulations of alkynes with anthranils. Chemical Communications, 2021, 57, 1494-1497.	4.1	5
385	Coumarin-based fluorescent probe for the detection of glutathione and nitroreductase. Tetrahedron, 2021, 82, 131890.	1.9	5
386	Boronic Acid Based Modular Fluorescent Saccharide Sensors. Reviews in Fluorescence, 2009, , 103-118.	0.5	5
387	An upcycled wood sponge adsorbent for drinking water purification by solar steam generation. Environmental Science: Nano, 2022, 9, 2559-2571.	4.3	5
388	Near-Infrared Light-Triggered Bacterial Eradication Using a Nanowire Nanocomposite of Graphene Nanoribbons and Chitosan-Coated Silver Nanoparticles. Frontiers in Chemistry, 2021, 9, 767847.	3.6	4
389	Catalyst: Academia and Industry, Continually Blurring Research Roles. CheM, 2016, 1, 173-176.	11.7	3
390	Hierarchically porous zirconium dioxide dual-templated by acacia mangium tannin extract and an amphiphilic triblock copolymer. Materials Chemistry and Physics, 2020, 253, 123335.	4.0	3
391	Molecularâ€splicing strategy to construct a nearâ€infrared fluorescent probe for UDPâ€glucuronosyltransferase1A1. Angewandte Chemie, 0, , .	2.0	3
392	Polymer indicator displacement assay: electrochemical glucose monitoring based on boronic acid receptors and graphene foam competitively binding with poly-nordihydroguaiaretic acid. Analyst, The, 2022, 147, 661-670.	3.5	3
393	Special issue on "Molecular sensors and molecular logic gates― Frontiers of Chemical Science and Engineering, 2022, 16, 1-3.	4.4	3
394	Repurposing lignin to generate functional afterglow paper. Cell Reports Physical Science, 2022, 3, 100867.	5.6	3
395	Simple Protocol for NMR Analysis of the Enantiomeric Purity of Primary Amines. Organic Letters, 2006, 8, 2203-2203.	4.6	2
396	Virtual Issue: Chemosensors. ChemistryOpen, 2018, 7, 215-216.	1.9	2

#	Article	IF	CITATIONS
397	Selective Cu 2+ Ion Sensing by Nanoaggregates of Pyridylâ€2,6â€bis(3â€allylsalicylaldehyde)hydrazone. ChemistrySelect, 2018, 3, 5395-5400.	1.5	2
398	Voltammetric characterisation of diferrocenylborinic acid in organic solution and in aqueous media when immobilised into a titanate nanosheet film. Dalton Transactions, 2019, 48, 11200-11207.	3.3	2
399	Analysis of Protein Glycation Using Phenylboronate Acrylamide Gel Electrophoresis. Methods in Molecular Biology, 2019, 1855, 161-175.	0.9	2
400	The mechanics of supramolecular chemistry. Chemical Communications, 2020, 56, 6467-6468.	4.1	2
401	Special issue on "Fluorescent probes― Frontiers of Chemical Science and Engineering, 2020, 14, 1-3.	4.4	2
402	Ferrocene-Labelled Electroactive Aptamer-Based Sensors (Aptasensors) for Glycated Haemoglobin. Molecules, 2021, 26, 7077.	3.8	2
403	Visual Sensing of \hat{l}^2 -Glucosidase From Intestinal Fungus in the Generation of Cytotoxic Icarisid II. Frontiers in Chemistry, 2022, 10, .	3.6	2
404	Special issue dedicated to the Third International Conference on Molecular Sensors and Molecular Logic Gates (MSMLG). Supramolecular Chemistry, 2013, 25, 1-1.	1.2	1
405	Fluorescent Saccharide Sensors. , 2005, , 41-67.		1
406	Fluorescent Tict Sensors for Saccharides. , 2006, , 333-350.		1
407	Rational Design of a Twoâ€Photon Fluorescent Probe for Human Cytochrome P450 3A and the Visualization of Mechanismâ€Based Inactivation. Angewandte Chemie, 2022, 134, e202113191.	2.0	1
408	<title>Fluorescent sensors based on boronic acids</title> ., 1999, , .		0
409	A Modular Electrochemical Sensor for Saccharides ChemInform, 2003, 34, no.	0.0	O
410	A Practical Synthesis of Enantiopure (S)-4-(4-Hydroxybenzyl)-oxazolidin-2-one ChemInform, 2003, 34, no.	0.0	0
411	Synthesis and Structural Characterization of the First Bis(bora)calixarene: A Selective, Bidentate, Fluorescent Fluoride Sensor ChemInform, 2004, 35, no.	0.0	O
412	Oil Water Interfacial Phosphate Transfer Facilitated by Boronic Acid: Observation of Unusually Fast Oil Water Lateral Charge Transport. ChemElectroChem, 2014, 1, 1587-1587.	3 . 4	0
413	Light controlled imaging probes for intracellular target recognition: photochromism as a tool to enhance sensing precision. Science China Chemistry, 2017, 60, 1563-1564.	8.2	0
414	Forum on Biospecies Sensors. ACS Applied Bio Materials, 2021, 4, 2231-2232.	4.6	0

ARTICLE IF CITATIONS
415 Biomimetic Ion Transport: Pores and Channels in Vesicle Membranes., 1990,, 145-150. 0