
Sravya Tekumalla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4356558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review. Metals, 2015, 5, 1-39.	2.3	164
2	Recrystallization-based grain boundary engineering of 316L stainless steel produced via selective laser melting. Acta Materialia, 2020, 200, 366-377.	7.9	132
3	An insight into ignition factors and mechanisms of magnesium based materials: A review. Materials and Design, 2017, 113, 84-98.	7.0	101
4	Enhancing overall static/dynamic/damping/ignition response of magnesium through the addition of lower amounts (<2%) of yttrium. Journal of Alloys and Compounds, 2016, 689, 350-358.	5.5	42
5	Magnesium-iron micro-composite for enhanced shielding of electromagnetic pollution. Composites Part B: Engineering, 2019, 163, 150-157.	12.0	33
6	Designing highly ductile magnesium alloys: current status and future challenges. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 194-281.	12.3	33
7	A strong and deformable in-situ magnesium nanocomposite igniting above 1000 °C. Scientific Reports, 2018, 8, 7038.	3.3	30
8	Enhanced (X-band) microwave shielding properties of pure magnesium by addition of diamagnetic titanium micro-particulates. Journal of Alloys and Compounds, 2019, 770, 473-482.	5.5	28
9	Mechanical properties and in vitro cytocompatibility of dense and porous Ti–6Al–4V ELI manufactured by selective laser melting technology for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104712.	3.1	27
10	The dynamic compressive response of a high-strength magnesium alloy and its nanocomposite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 702, 65-72.	5.6	23
11	Evolution of texture and asymmetry and its impact on the fatigue behaviour of an in-situ magnesium nanocomposite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 727, 61-69.	5.6	22
12	The role of the solidification structure on orientation-dependent hardness in stainless steel 316L produced by laser powder bed fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142493.	5.6	20
13	Influence of Cerium on the Deformation and Corrosion of Magnesium. Journal of Engineering Materials and Technology, Transactions of the ASME, 2016, 138, .	1.4	19
14	Superior ductility in magnesium alloy-based nanocomposites: the crucial role of texture induced by nanoparticles. Journal of Materials Science, 2019, 54, 8711-8718.	3.7	19
15	Nano-ZnO Particles' Effect in Improving the Mechanical Response of Mg-3Al-0.4Ce Alloy. Metals, 2016, 6, 276.	2.3	16
16	Fe3O4 Nanoparticle-Reinforced Magnesium Nanocomposites Processed via Disintegrated Melt Deposition and Turning-Induced Deformation Techniques. Metals, 2019, 9, 1225.	2.3	16
17	Effect of defects on electromagnetic interference shielding effectiveness of magnesium. Journal of Materials Science: Materials in Electronics, 2018, 29, 9728-9739.	2.2	15

18 EMI shielding of metals, alloys, and composites. , 2020, , 341-355.

SRAVYA TEKUMALLA

#	Article	IF	CITATIONS
19	Cumulative Effect of Strength Enhancer—Lanthanum and Ductility Enhancer—Cerium on Mechanical Response of Magnesium. Metals, 2017, 7, 241.	2.3	11
20	Influence of turning speed on the microstructure and properties of magnesium ZK60 alloy pre-processed via turning-induced-deformation. Journal of Alloys and Compounds, 2020, 831, 154840.	5.5	11
21	A Novel Turning-Induced-Deformation Based Technique to Process Magnesium Alloys. Metals, 2019, 9, 841.	2.3	10
22	Influence of micro Ti particles on resistance to cavitation erosion of Mg-xTi composites. Mechanics of Materials, 2021, 154, 103705.	3.2	10
23	Investigations of Wear Response of Pure Mg and Mg-0.4 Ce-Y ₂ O ₃ /ZnO Nanocomposites Using a Single and Repeated Scratch Tests. Tribology Transactions, 2018, 61, 951-959.	2.0	8
24	Processing, Properties and Potential Applications of Magnesium Alloy-Based Nanocomposites: A Review. Minerals, Metals and Materials Series, 2019, , 3-18.	0.4	8
25	Using CaO Nanoparticles to Improve Mechanical and Ignition Response of Magnesium. Current Nanomaterials, 2018, 3, 44-51.	0.4	7
26	Preprocessing of powder to enhance mechanical and thermal response of bulk magnesium. Metal Powder Report, 2019, 74, 137-140.	0.1	7
27	An Engineered Magnesium Alloy Nanocomposite: Mechanisms Governing Microstructural Development and Mechanical Properties. Minerals, Metals and Materials Series, 2018, , 193-202.	0.4	4
28	Enhancing Properties of Aerospace Alloy Elektron 21 Using Boron Carbide Nanoparticles as Reinforcement. Applied Sciences (Switzerland), 2019, 9, 5470.	2.5	4
29	Development of Novel Lightweight Metastable Metal–(Metal + Ceramic) Composites Using a New Powder Metallurgy Approach. Materials, 2020, 13, 3283.	2.9	4
30	Development from Alloys to Nanocomposite for an Enhanced Mechanical and Ignition Response in Magnesium. Metals, 2021, 11, 1792.	2.3	4
31	Introductory Chapter: An Insight into Fascinating Potential of Magnesium. , 0, , .		3
32	Using Micro-Alloying (0.5Zr-0.4Ce) to Significantly Enhance Hardness, Tensile and Compressive Response of Magnesium. Materials Science Forum, 0, 928, 177-182.	0.3	0
33	The Promise of Sustainable Magnesium Composite Technology for Greener Future. Materials Science Forum, 0, 928, 56-61.	0.3	0
34	Fatigue Behavior of Magnesium Matrix Composites. , 2021, , 344-359.		0