List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4356321/publications.pdf Version: 2024-02-01

		34493	53065
321	11,332	54	89
papers	citations	h-index	g-index
324	324	324	10792
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tuning the selectivity of natural oils and fatty acids/esters deoxygenation to biofuels and fatty alcohols: A review. Green Energy and Environment, 2023, 8, 722-743.	4.7	14
2	The effect of adsorbed oxygen species on carbon-resistance of Ni-Zr catalyst modified by Al and Mn for dry reforming of methane. Catalysis Today, 2022, 384-386, 257-264.	2.2	17
3	Relay catalysis of copper-magnesium catalyst on efficient valorization of glycerol to glycolic acid. Chemical Engineering Journal, 2022, 428, 132555.	6.6	12
4	Synthetic Fuels from Biomass: Photocatalytic Hydrodecarboxylation of Octanoic Acid by Ni Nanoparticles Deposited on TiO ₂ . ChemSusChem, 2022, 15, .	3.6	7
5	Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. Bioresource Technology, 2022, 344, 126371.	4.8	40
6	The inhibition of p-hydroxyphenyl hydroxyl group in residual lignin on enzymatic hydrolysis of cellulose and its underlying mechanism. Bioresource Technology, 2022, 346, 126585.	4.8	8
7	Oligomer-first mechanism in the transformation of biomass derivatives selectively to produce D-lactic acid. Chemical Engineering Journal, 2022, 432, 134359.	6.6	8
8	Boosting CO2 reforming of methane via the metal-support interaction in mesostructured SBA-16-derived Ni nanoparticles. Applied Materials Today, 2022, 26, 101354.	2.3	5
9	Selective transformation of typical sugars to lactic acid catalyzed by dealuminated ZSM-5 supported erbium. Renewable Energy, 2022, 187, 551-560.	4.3	10
10	Chemical-switching strategy for the production of green biofuel on NiCo/MCM-41 catalysts by tuning atmosphere. Fuel, 2022, 315, 123118.	3.4	6
11	Low temperature catalytic hydrodeoxygenation of lignin-derived phenols to cyclohexanols over the Ru/SBA-15 catalyst. RSC Advances, 2022, 12, 9352-9362.	1.7	10
12	Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review. Catalysts, 2022, 12, 244.	1.6	31
13	Mechanism of Preferential Hydrogenation of Hydroxymethyl Group to Aldehyde Group in 5â€Hydroxymethylfurfural over W ₂ Câ€Based Catalyst. ChemSusChem, 2022, 15, e202200174.	3.6	4
14	Bimetallic Ni and Mo Nitride as an Efficient Catalyst for Hydrodeoxygenation of Palmitic Acid. ACS Catalysis, 2022, 12, 4333-4343.	5.5	25
15	Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst. Applied Catalysis B: Environmental, 2022, 309, 121260.	10.8	49
16	Origin of enantioselectivity and product-distribution control in isocyanide-based multicomponent reaction catalysed by chiral N, N'-dioxide-Mg(II) complex. Molecular Catalysis, 2022, 524, 112277.	1.0	2
17	Cooperative roles of Sn(IV) and Cu(II) for efficient transformation of biomass-derived acetol towards lactic acid production. Science of the Total Environment, 2022, 833, 155044.	3.9	4
18	Insights into the NaCl-Induced Formation of Soluble Humins during Fructose Dehydration to 5-Hydroxymethylfurfural. Industrial & Engineering Chemistry Research, 2022, 61, 5786-5796.	1.8	9

#	Article	IF	CITATIONS
19	Facile preparation of lignin nanoparticles from waste Camellia oleifera shell: The solvent effect on the structural characteristic of lignin nanoparticles. Industrial Crops and Products, 2022, 183, 114943.	2.5	18
20	Efficiency conversion of jatropha oil into high-quality biofuel over the innovative Ni-Mo2N based catalyst. Fuel, 2022, 324, 124548.	3.4	9
21	Mechanism Insight into Catalytic Performance of Ni12P5 over Ni2P toward the Catalytic Deoxygenation of Butyric Acid. Catalysts, 2022, 12, 569.	1.6	1
22	Enhancing enzymatic hydrolysis efficiency of crop straws via tetrahydrofuran/water co-solvent pretreatment. Bioresource Technology, 2022, 358, 127428.	4.8	18
23	Enhanced pyrolysis of lignocellulosic biomass by room-temperature dilute sulfuric acid pretreatment. Journal of Analytical and Applied Pyrolysis, 2022, 166, 105588.	2.6	12
24	Preface to Special Issue on Green Conversion of HMF. ChemSusChem, 2022, 15, .	3.6	10
25	One-step synthesis of highly active and stable Ni-ZrO2 catalysts for the conversion of methyl laurate to alkanes. Journal of Catalysis, 2022, 413, 297-310.	3.1	20
26	Regulating the competitive reaction pathway in glycerol conversion to lactic acid/glycolic acid selectively. Journal of Catalysis, 2022, 413, 407-416.	3.1	22
27	One-pot chemo-catalytic conversion of glucose to methyl lactate over In/γ-Al2O3 catalyst. Catalysis Today, 2021, 365, 249-256.	2.2	19
28	Study on the pyrolysis behaviour of the macroalga Ulva prolifera. Journal of Applied Phycology, 2021, 33, 91-99.	1.5	5
29	Conversion of polysaccharides in Ulva prolifera to valuable chemicals in the presence of formic acid. Journal of Applied Phycology, 2021, 33, 101-110.	1.5	7
30	Sustainable production of lignin micro-/nano-particles (LMNPs) from biomass: Influence of the type of biomass on their self-assembly capability and physicochemical properties. Journal of Hazardous Materials, 2021, 403, 123701.	6.5	29
31	The effect of support on nickel phosphide catalysts for one-pot conversion of jatropha oil into high grade hydrocarbons. Catalysis Today, 2021, 367, 83-94.	2.2	15
32	Microwave-assisted catalytic depolymerization of lignin from birch sawdust to produce phenolic monomers utilizing a hydrogen-free strategy. Journal of Hazardous Materials, 2021, 402, 123490.	6.5	27
33	Direct hydroxylation of 1,4â€Dichlorobenzene to 2,5â€Dichlorophenol over Activated Carbon Catalysts. ChemistrySelect, 2021, 6, 239-248.	0.7	0
34	On the development of chrome-free tanning agents: an advanced Trojan horse strategy using â€~Al–Zr-oligosaccharides' produced by the depolymerization and oxidation of biomass. Green Chemistry, 2021, 23, 2640-2651.	4.6	23
35	Theoretical insight into the deoxygenation molecular mechanism of butyric acid catalyzed by a Ni ₁₂ P ₆ cluster. Catalysis Science and Technology, 2021, 11, 6425-6437.	2.1	2
36	Catalytic mechanism for the isomerization of glucose into fructose over an aluminium-MCM-41 framework. Catalysis Science and Technology, 2021, 11, 1537-1543.	2.1	8

#	Article	IF	CITATIONS
37	Advanced masking agent for leather tanning from stepwise degradation and oxidation of cellulose. Green Chemistry, 2021, 23, 4044-4050.	4.6	32
38	Guanidine–Amide-Catalyzed Aza-Henry Reaction of Isatin-Derived Ketimines: Origin of Selectivity and New Catalyst Design. Molecules, 2021, 26, 1965.	1.7	1
39	The activation of methane by Ni-Cu/MoOx for the synthesis of ethanol. Journal of Chemical Sciences, 2021, 133, 1.	0.7	2
40	The Deoxygenation of Jatropha Oil to High Quality Fuel via the Synergistic Catalytic Effect of Ni, W2C and WC Species. Catalysts, 2021, 11, 469.	1.6	6
41	Dry reforming of methane over Ni–ZrOx catalysts doped by manganese: On the effect of the stability of the structure during time on stream. Applied Catalysis A: General, 2021, 617, 118120.	2.2	17
42	Unexpected Formation of Organic Siloxanes alongside Ethylphenols in the Catalytic Hydrogenation of Waste Enzymatic Lignin. Advanced Energy and Sustainability Research, 2021, 2, 2100059.	2.8	2
43	Carbon resistance of xNi/HTASAO5 catalyst for the production of H2 via CO2 reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 20835-20847.	3.8	7
44	Insights into the Influence of ZrO ₂ Crystal Structures on Methyl Laurate Hydrogenation over Co/ZrO ₂ Catalysts. ACS Catalysis, 2021, 11, 7099-7113.	5.5	82
45	Effect of MgCl2 solution pretreatment on pubescens conversion at room temperature. Renewable Energy, 2021, 171, 287-298.	4.3	7
46	Tailoring the yttrium content in Ni-Ce-Y/SBA-15 mesoporous silicas for CO2 methanation. Catalysis Today, 2021, 382, 104-119.	2.2	16
47	Selective degradation and oxidation of hemicellulose in corncob to oligosaccharides: From biomass into masking agent for sustainable leather tanning. Journal of Hazardous Materials, 2021, 413, 125425.	6.5	31
48	Syngas Production via CO2 Reforming of Methane over Aluminum-Promoted NiO–10Al2O3–ZrO2 Catalyst. ACS Omega, 2021, 6, 22383-22394.	1.6	5
49	Pyrolysis of High-Ash Natural Microalgae from Water Blooms: Effects of Acid Pretreatment. Toxins, 2021, 13, 542.	1.5	6
50	Production of Nitrogen ontaining Compounds via the Conversion of Natural Microalgae from Water Blooms Catalyzed by ZrO ₂ . ChemSusChem, 2021, 14, 3935-3944.	3.6	9
51	Catalytic performance of Pt3Ni cluster toward ethane activation. Chemical Physics, 2021, 548, 111204.	0.9	2
52	Mechanism and Selectivity of Cyclopropanation of 3-Alkenyl-oxindoles with Sulfoxonium Ylides Catalyzed by a Chiral <i>N</i> , <i>N</i> ′-Dioxide–Mg(II) Complex. Journal of Organic Chemistry, 2021, 86, 11683-11697.	1.7	7
53	Enantioselective synthesis of D-lactic acid via chemocatalysis using MgO: Experimental and molecular-based rationalization of the triose's reactivity and preliminary insights with raw biomass. Applied Catalysis B: Environmental, 2021, 292, 120145.	10.8	37
54	Selective Hydrogenation of the Carbonyls in Furfural and 5-Hydroxymethylfurfural Catalyzed by PtNi Alloy Supported on SBA-15 in Aqueous Solution Under Mild Conditions. Frontiers in Chemistry, 2021, 9, 759512.	1.8	14

#	Article	IF	CITATIONS
55	Effect of metal triflates on the microwave-assisted catalytic hydrogenolysis of birch wood lignin to monophenolic compounds. Industrial Crops and Products, 2021, 167, 113515.	2.5	7
56	The insights into the catalytic performance of rare earth metal ions on lactic acid formation from biomass via microwave heating. Chemical Engineering Journal, 2021, 421, 130014.	6.6	19
57	Efficient catalytic conversion of jatropha oil to high grade biofuel on Ni-Mo2C/MCM-41 catalysts with tuned surface properties. Journal of Energy Chemistry, 2021, 61, 425-435.	7.1	19
58	Unraveling enhanced activity and coke resistance of Pt-based catalyst in bio-aviation fuel refining. Applied Energy, 2021, 301, 117469.	5.1	28
59	Effect of nickel salts on the production of biochar derived from alkali lignin: properties and applications. Bioresource Technology, 2021, 341, 125876.	4.8	16
60	Novel Preparation of Cu and Fe Zirconia Supported Catalysts for Selective Catalytic Reduction of NO with NH3. Catalysts, 2021, 11, 55.	1.6	8
61	The Effect of Si on CO2 Methanation over Ni-xSi/ZrO2 Catalysts at Low Temperature. Catalysts, 2021, 11, 67.	1.6	5
62	Effect of Ni(NO3)2 Pretreatment on the Pyrolysis of Organsolv Lignin Derived from Corncob Residue. Processes, 2021, 9, 23.	1.3	8
63	Theoretical Insights into the Cooperative Catalytic Mechanism of a PW-Containing Keggin Heteropolyacid Anion and Ethanol toward Conversion of Fructose into 5-Ethoxymethylfurfural in Ethanol Solution. ACS Sustainable Chemistry and Engineering, 2021, 9, 14789-14799.	3.2	5
64	The influence of solvent on the pyrolysis of organosolv lignins extracted from willow. Energy Conversion and Management: X, 2021, 13, 100139.	0.9	0
65	Theoretical study on molecular mechanism of aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformyfuran catalyzed by VO2+ with counterpart anion in N,N-dimethylacetamide solution. RSC Advances, 2021, 11, 39888-39895.	1.7	1
66	Treatment of methylene blue by mesoporous Fe/SiO2 prepared from rice husk pyrolytic residues. Catalysis Today, 2020, 355, 529-538.	2.2	19
67	Mechanism study on asymmetric Michael addition reaction between alkynone and α-angelica lactone catalyzed by chiral N, N'-dioxide-Sc(III) complex. Catalysis Today, 2020, 355, 635-644.	2.2	3
68	Solvent Effects on Degradative Condensation Side Reactions of Fructose in Its Initial Conversion to 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 501-512.	3.6	46
69	Production of high-quality biofuel via ethanol liquefaction of pretreated natural microalgae. Renewable Energy, 2020, 147, 293-301.	4.3	42
70	Low temperature catalytic conversion of oligomers derived from lignin in pubescens on Pd/NbOPO4. Applied Catalysis B: Environmental, 2020, 263, 118325.	10.8	49
71	Catalytic mechanisms of oxygen-containing groups over vanadium active sites in an Al-MCM-41 framework for production of 2,5-diformylfuran from 5-hydroxymethylfurfural. Catalysis Science and Technology, 2020, 10, 278-290.	2.1	15
72	A â€~Trojan horse strategy' for the development of a renewable leather tanning agent produced <i>via</i> an AlCl ₃ -catalyzed cellulose depolymerization. Green Chemistry, 2020, 22, 316-321.	4.6	31

#	Article	IF	CITATIONS
73	Microwave-assisted depolymerization of various types of waste lignins over two-dimensional CuO/BCN catalysts. Green Chemistry, 2020, 22, 725-736.	4.6	52
74	Formation and in situ separation of oligomeric products from complete depolymerization of pubescens using a catalyst-free biphasic system. Cellulose, 2020, 27, 1951-1964.	2.4	7
75	Influence of green solvent on levulinic acid production from lignocellulosic paper waste. Bioresource Technology, 2020, 298, 122544.	4.8	66
76	The Promotion Effect of NaCl on the Conversion of Xylose to Furfural ^{â€} . Chinese Journal of Chemistry, 2020, 38, 178-184.	2.6	21
77	Conversion of saccharides in enteromorpha prolifera to furfurals in the presence of FeCl3. Molecular Catalysis, 2020, 484, 110729.	1.0	5
78	Asymmetric Cyanation of Activated Olefins with Ethyl Cyanoformate Catalyzed by Ti(IV)-Catalyst: A Theoretical Study. Catalysts, 2020, 10, 1079.	1.6	2
79	CeZrOx Promoted Water-Gas Shift Reaction under Steam–Methane Reforming Conditions on Ni-HTASO5. Catalysts, 2020, 10, 1110.	1.6	3
80	Effects of MgCl2 Solution Pretreatment at Room Temperature on the Pyrolytic Behavior of Pubescens and the Properties of Bio-oil Obtained. Energy & Fuels, 2020, 34, 12665-12677.	2.5	5
81	Controlling the Reaction Networks for Efficient Conversion of Glucose into 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 4812-4832.	3.6	73
82	Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. ChemSusChem, 2020, 13, 4296-4317.	3.6	207
83	Torrefaction at 200 °C of <i>Pubescens</i> Pretreated with AlCl ₃ Aqueous Solution at Room Temperature. ACS Omega, 2020, 5, 27709-27722.	1.6	7
84	High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis. Renewable and Sustainable Energy Reviews, 2020, 132, 110107.	8.2	28
85	Ni–Fe Catalysts Supported on γ-Al ₂ O ₃ /HZSM-5 for Transformation of Palmitic Acid into Hydrocarbon Fuel. Industrial & Engineering Chemistry Research, 2020, 59, 17373-17386.	1.8	28
86	Efficient Depolymerization of Cellulosic Paper Towel Waste Using Organic Carbonate Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 13100-13110.	3.2	18
87	Reductive catalytic fractionation of lignin in birch sawdust to monophenolic compounds with high selectivity. Molecular Catalysis, 2020, 495, 111164.	1.0	18
88	Selectivity control in inverse electron demand Diels–Alder reaction of o-Quinone methides catalyzed by chiral N,N′-Dioxide–Sc(III) complex. Molecular Catalysis, 2020, 498, 111242.	1.0	2
89	High-Efficiency Synthesis of 5-Hydroxymethylfurfural from Fructose over Highly Sulfonated Organocatalyst. Industrial & Engineering Chemistry Research, 2020, 59, 17218-17227.	1.8	21
90	Cooperative interaction of sodium and chlorine ions with β-cellobiose in aqueous solution from quantum mechanics and molecular dynamics. Cellulose, 2020, 27, 6793-6809.	2.4	3

#	Article	IF	CITATIONS
91	Catalytic Mechanisms of Zirconium-Containing Active Sites over the SBA-15 Zeolite Framework for Xylose Conversion to Methyl Lactate. Journal of Physical Chemistry C, 2020, 124, 13102-13112.	1.5	11
92	Study of glucose isomerisation to fructose over three heterogeneous carbon-based aluminium-impregnated catalysts. Journal of Cleaner Production, 2020, 268, 122378.	4.6	14
93	One-Step Synthesis of Highly Active and Stable Ni–ZrO _{<i>x</i>} for Dry Reforming of Methane. Industrial & Engineering Chemistry Research, 2020, 59, 11441-11452.	1.8	46
94	Temperature-tuned selectivity to alkanes or alcohol from ethyl palmitate deoxygenation over zirconia-supported cobalt catalyst. Fuel, 2020, 278, 118295.	3.4	34
95	The effect of sodium chloride concentration on the mutarotation and structure of d-xylose in water: Experimental and theoretical investigation. Carbohydrate Research, 2020, 489, 107941.	1.1	5
96	Catalytic Thermochemical Conversion of Algae and Upgrading of Algal Oil for the Production of High-Grade Liquid Fuel: A Review. Catalysts, 2020, 10, 145.	1.6	25
97	Solvent Effects on Degradative Condensation Side Reactions of Fructose in Its Initial Conversion to 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 438-438.	3.6	4
98	Directing the Simultaneous Conversion of Hemicellulose and Cellulose in Raw Biomass to Lactic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 4244-4255.	3.2	47
99	The Roles of H2O/Tetrahydrofuran System in Lignocellulose Valorization. Frontiers in Chemistry, 2020, 8, 70.	1.8	16
100	Î ³ -Valerolactone Production from Furfural Residue with Formic Acid as the Sole Hydrogen Resource via an Integrated Strategy on Au-Ni/ZrO ₂ . Industrial & Engineering Chemistry Research, 2020, 59, 17228-17238.	1.8	15
101	Steam reforming of CH4 at low temperature on Ni/ZrO2 catalyst: Effect of H2O/CH4 ratio on carbon deposition. International Journal of Hydrogen Energy, 2020, 45, 14281-14292.	3.8	30
102	Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 2020, 186, 109547.	3.7	280
103	Mechanistic study of cellobiose conversion to 5-hydroxymethylfurfural catalyzed by a BrÃ,nsted acid with counteranions in an aqueous solution. Physical Chemistry Chemical Physics, 2020, 22, 9349-9361.	1.3	11
104	Roles of water and aluminum sulfate for selective dissolution and utilization of hemicellulose to develop sustainable corn stover-based biorefinery. Renewable and Sustainable Energy Reviews, 2020, 122, 109724.	8.2	16
105	Room temperature pretreatment of pubescens by AlCl3 aqueous solution. Journal of Energy Chemistry, 2019, 31, 138-147.	7.1	6
106	The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catalysis Today, 2019, 319, 14-24.	2.2	281
107	Theoretical Study on Asymmetric [2 + 2] Cycloaddition of an Alkynone with a Cyclic Enol Silyl Ether Catalyzed by a Chiral <i>N</i> , <i>N</i> ′-Dioxide-Zn(II) Complex. Organometallics, 2019, 38, 3111-3123.	1.1	5
108	Recovery of Lactic Acid from Corn Stover Hemicellulose-Derived Liquor. ACS Omega, 2019, 4, 10571-10579.	1.6	16

#	Article	IF	CITATIONS
109	Identification and structural characterization of oligomers formed from the pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 2019, 144, 104696.	2.6	22
110	Cooperative Catalysis of Chiral Guanidine and Rh2(OAc)4 in Asymmetric O–H Insertion of Carboxylic Acid: A Theoretical Investigation. Journal of Organic Chemistry, 2019, 84, 15020-15031.	1.7	11
111	Asymmetric retro-[1,4]-Brook rearrangement of 3-silyl allyloxysilanes via chirality transfer from silicon to carbon. RSC Advances, 2019, 9, 26209-26213.	1.7	4
112	Molecular mechanism comparison of decarbonylation with deoxygenation and hydrogenation of 5-hydroxymethylfurfural catalyzed by palladium acetate. Physical Chemistry Chemical Physics, 2019, 21, 3795-3804.	1.3	8
113	Adjusting the acidity of sulfonated organocatalyst for the one-pot production of 5-ethoxymethylfurfural from fructose. Catalysis Science and Technology, 2019, 9, 483-492.	2.1	28
114	D-Excess-LaA Production Directly from Biomass by Trivalent Yttrium Species. IScience, 2019, 12, 132-140.	1.9	19
115	Synergistic Catalytic Mechanism of Acidic Silanol and Basic Alkylamine Bifunctional Groups Over SBA-15 Zeolite toward Aldol Condensation. Journal of Physical Chemistry C, 2019, 123, 4903-4913.	1.5	20
116	The design and catalytic performance of molybdenum active sites on an MCM-41 framework for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Catalysis Science and Technology, 2019, 9, 811-821.	2.1	13
117	Transformation of Jatropha Oil into High-Quality Biofuel over Ni–W Bimetallic Catalysts. ACS Omega, 2019, 4, 10580-10592.	1.6	22
118	Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water. Green Chemistry, 2019, 21, 4341-4353.	4.6	80
119	One-Pot Synthesis of 2,5-Diformylfuran from Fructose by Bifunctional Polyaniline-Supported Heteropolyacid Hybrid Catalysts. Catalysts, 2019, 9, 445.	1.6	14
120	Selective Conversion of Hemicellulose in Macroalgae <i>Enteromorpha prolifera</i> to Rhamnose. ACS Omega, 2019, 4, 7023-7028.	1.6	14
121	A one-pot microwave-assisted NaCl–H2O/GVL solvent system for cellulose conversion to 5-hydroxymethylfurfural and saccharides with in situ separation of the products. Cellulose, 2019, 26, 8383-8400.	2.4	25
122	<i>exo/endo</i> Selectivity Control in Diels–Alder Reactions of Geminal Bis(silyl) Dienes: Theoretical and Experimental Studies. Journal of Organic Chemistry, 2019, 84, 3940-3952.	1.7	12
123	Removal of pollutants in banknote printing wastewater by mesoporous Fe/SiO2 prepared from rice husk pyrolytic residues. Environmental Science and Pollution Research, 2019, 26, 16000-16013.	2.7	13
124	Cooperative Catalytic Performance of Lewis and BrÃ,nsted Acids from AlCl ₃ Salt in Aqueous Solution toward Glucose-to-Fructose Isomerization. Journal of Physical Chemistry C, 2019, 123, 4879-4891.	1.5	28
125	Synergistic Effect of Different Species in Stannic Chloride Solution on the Production of Levulinic Acid from Biomass. ACS Sustainable Chemistry and Engineering, 2019, 7, 5176-5183.	3.2	40
126	Catalytic depolymerization of organosolv lignin to phenolic monomers and low molecular weight oligomers. Fuel, 2019, 244, 247-257.	3.4	76

#	Article	IF	CITATIONS
127	Highly Carbon-Resistant Y Doped NiO–ZrOm Catalysts for Dry Reforming of Methane. Catalysts, 2019, 9, 1055.	1.6	25
128	The Conversion of Jatropha Oil into Jet Fuel on NiMo/Alâ€MCMâ€41 Catalyst: Intrinsic Synergic Effects between Ni and Mo. Energy Technology, 2019, 7, 1800809.	1.8	23
129	Controlling the growth of activated carbon supported nickel phosphide catalysts via adjustment of surface group distribution for hydrodeoxygenation of palmitic acid. Catalysis Today, 2019, 319, 182-190.	2.2	24
130	Controlling the cleavage of the inter- and intra-molecular linkages in lignocellulosic biomass for further biorefining: A review. Bioresource Technology, 2018, 256, 466-477.	4.8	55
131	The effect of NH3·H2O addition in Ni/SBA-15 catalyst preparation on its performance for carbon dioxide reforming of methane to produce H2. International Journal of Hydrogen Energy, 2018, 43, 13921-13930.	3.8	23
132	Sodium Chloride-Assisted Depolymerization of Xylo-oligomers to Xylose. ACS Sustainable Chemistry and Engineering, 2018, 6, 4098-4104.	3.2	43
133	Theoretical Investigation on Direct Vinylogous Aldol Reaction of Isatin Catalyzed by Chiral- N , N' -dioxide Sc(III) Complex. Molecular Catalysis, 2018, 453, 22-30.	1.0	1
134	Hydrotreatment Upgrading of Bio-oil from Torrefaction of Pubescens in Alcohol over Pd/NbOPO ₄ . ACS Omega, 2018, 3, 4836-4846.	1.6	13
135	Mechanism and Origins of Stereoinduction in an Asymmetric Friedel–Crafts Alkylation Reaction of Chalcone Catalyzed by Chiral N,N′-Dioxide–Sc(III) Complex. Journal of Organic Chemistry, 2018, 83, 4628-4640.	1.7	10
136	Performances of Several Solvents on the Cleavage of Inter―and Intramolecular Linkages of Lignin in Corncob Residue. ChemSusChem, 2018, 11, 1494-1504.	3.6	34
137	Mechanistic understanding of salt-assisted autocatalytic hydrolysis of cellulose. Sustainable Energy and Fuels, 2018, 2, 936-940.	2.5	57
138	Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: A review. Fuel Processing Technology, 2018, 169, 199-206.	3.7	275
139	Effect of Tetrahydrofuran on the Solubilization and Depolymerization of Cellulose in a Biphasic System. ChemSusChem, 2018, 11, 397-405.	3.6	36
140	Performance of edges on carbon for the catalytic hydroxylation of benzene to phenol. Catalysis Science and Technology, 2018, 8, 176-186.	2.1	13
141	Synthesis Gas Production via Dry Reforming of Methane over Manganese Promoted Nickel/Cerium–Zirconium Oxide Catalyst. Industrial & Engineering Chemistry Research, 2018, 57, 16645-16656.	1.8	57
142	Structure characterization and pyrolysis behavior of organosolv lignin isolated from corncob residue. Journal of Analytical and Applied Pyrolysis, 2018, 136, 115-124.	2.6	33
143	Effects of γ-Valerolactone/H ₂ O Solvent on the Degradation of <i>pubescens</i> for Its Fullest Utilization. Journal of Agricultural and Food Chemistry, 2018, 66, 6094-6103.	2.4	22
144	Mechanistic investigations on asymmetric N-H insertion of amines catalyzed by palladium-chiral guanidine complex. Journal of Catalysis, 2018, 364, 426-436.	3.1	11

#	Article	IF	CITATIONS
145	Individual Pathways in the Formation of Magic-Size Clusters and Conventional Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 3660-3666.	2.1	62
146	The Promoting Effect of Ce on the Performance of Au/CexZr1â^'xO2 for γ-Valerolactone Production from Biomass-Based Levulinic Acid and Formic Acid. Catalysts, 2018, 8, 241.	1.6	11
147	Regular patterns of the effects of hydrogen-containing additives on the formation of CdSe monomer. Physical Chemistry Chemical Physics, 2018, 20, 20863-20873.	1.3	1
148	Separation of lactic acid from synthetic solutions and the mixture directly derived from corn stover by aqueous two phase extraction. Separation and Purification Technology, 2018, 204, 281-289.	3.9	27
149	Direct ring C H bond activation to produce cresols from toluene and hydrogen peroxide catalyzed by framework titanium in TS-1. Journal of Catalysis, 2018, 366, 37-49.	3.1	37
150	Toward a Zero-Waste Biorefinery: Confocal Microscopy as a Tool for the Analysis of Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2018, 6, 13185-13191.	3.2	5
151	Low-Temperature Catalytic CO ₂ Dry Reforming of Methane on Ni-Si/ZrO ₂ Catalyst. ACS Catalysis, 2018, 8, 6495-6506.	5.5	220
152	Effect of Heating Rate on Yields and Distribution of Oil Products from the Pyrolysis of Pubescen. Energy Technology, 2018, 6, 366-378.	1.8	16
153	The influence of reduction temperature on the performance of ZrOx/Ni-MnOx/SiO2 catalyst for low-temperature CO2 reforming of methane. Catalysis Today, 2017, 281, 259-267.	2.2	48
154	Catalytic Dehydration of Fructose into 5â€Hydroxymethylfurfural by a DMSOâ€like Polymeric Solid Organocatalyst. ChemCatChem, 2017, 9, 3218-3225.	1.8	25
155	Performance of Dimethyl Sulfoxide and BrÃ,nsted Acid Catalysts in Fructose Conversion to 5-Hydroxymethylfurfural. ACS Catalysis, 2017, 7, 2199-2212.	5.5	100
156	Mo-promoted Ni/Al2O3 catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2017, 42, 23500-23507.	3.8	71
157	Fractional conversion of microalgae from water blooms. Faraday Discussions, 2017, 202, 197-212.	1.6	17
158	Low-Temperature Torrefaction of <i>Phyllostachys heterocycla cv. pubescens</i> : Effect of Two Torrefaction Procedures on the Composition of Bio-Oil Obtained. ACS Sustainable Chemistry and Engineering, 2017, 5, 4869-4878.	3.2	18
159	Improvement of the selectivity to aniline in benzene amination over Cu/TS-1 by potassium. RSC Advances, 2017, 7, 21974-21981.	1.7	6
160	Theoretical study on the mechanism and selectivity of asymmetric cycloaddition reactions of 3-vinylindole catalyzed by chiral N,N'-dioxide-Ni(II) complex. Catalysis Today, 2017, 298, 130-137.	2.2	8
161	Sulfonated polyaniline as a solid organocatalyst for dehydration of fructose into 5-hydroxymethylfurfural. Green Chemistry, 2017, 19, 1932-1939.	4.6	64
162	Theoretical and experimental studies on the structure–property relationship of chiral N,N′-dioxide–metal catalysts probed by the carbonyl–ene reaction of isatin. Catalysis Science and Technology, 2017, 7, 2183-2193.	2.1	7

#	Article	IF	CITATIONS
163	Microwave-assisted hydrothermal selective dissolution and utilisation of hemicellulose in Phyllostachys heterocycla cv. pubescens. Green Chemistry, 2017, 19, 4889-4899.	4.6	51
164	Promotion catalytic role of ethanol on BrÃ,nsted acid for the sequential dehydration-etherification of fructose to 5-ethoxymethylfurfural. Journal of Catalysis, 2017, 352, 586-598.	3.1	40
165	A Simple Two-Step Method for the Selective Conversion of Hemicellulose in <i>Pubescens</i> to Furfural. ACS Sustainable Chemistry and Engineering, 2017, 5, 8137-8147.	3.2	50
166	Theoretical investigation on donor–acceptor interaction between a carbonyl compound and an <i>N</i> , <i>N</i> ′-dioxide–Sc(<scp>iii</scp>) complex. RSC Advances, 2017, 7, 56054-56061.	1.7	5
167	Density Functional Theory Study on the Nucleation and Growth of Pt _{<i>n</i>} Clusters on γ-Al ₂ O ₃ (001) Surface. ACS Omega, 2017, 2, 3250-3259.	1.6	13
168	Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl–H ₂ 0/THF Biphasic System. ACS Catalysis, 2017, 7, 256-266.	5.5	133
169	Suppression of oligomer formation in glucose dehydration by CO ₂ and tetrahydrofuran. Green Chemistry, 2017, 19, 3334-3343.	4.6	55
170	High Efficient Hydrogenation of Lignin-Derived Monophenols to Cyclohexanols over Pd/\hat{I}^3 -Al2O3 under Mild Conditions. Catalysts, 2016, 6, 12.	1.6	34
171	Oneâ€Pot Deoxygenation of Fructose to Furfuryl Alcohol by Sequential Dehydration and Decarbonylation. ChemCatChem, 2016, 8, 1379-1385.	1.8	16
172	Fractionation for further conversion: from raw corn stover to lactic acid. Scientific Reports, 2016, 6, 38623.	1.6	50
173	Microwave-enhanced pyrolysis of natural algae from water blooms. Bioresource Technology, 2016, 212, 311-317.	4.8	71
174	Understanding the cleavage of inter- and intramolecular linkages in corncob residue for utilization of lignin to produce monophenols. Green Chemistry, 2016, 18, 4109-4115.	4.6	55
175	Formylâ€Modified Polyaniline for the Catalytic Dehydration of Fructose to 5â€Hydroxymethylfurfural. ChemSusChem, 2016, 9, 2174-2181.	3.6	26
176	Tunable reactivity of geminal bis(silyl) enol derivatives leading to selective exo-IEDDA or Sakurai allylation with a l²,l³-unsaturated ketoester. Chemical Communications, 2016, 52, 10137-10140.	2.2	5
177	Mechanistic Study of the Asymmetric Carbonyl-Ene Reaction between Alkyl Enol Ethers and Isatin Catalyzed by the N,N′-Dioxide–Mg(OTf)2 Complex. Journal of Organic Chemistry, 2016, 81, 6444-6456.	1.7	20
178	General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals. Nature Communications, 2016, 7, 12223.	5.8	44
179	Selective extraction and conversion of lignin in actual biomass to monophenols: A review. Journal of Energy Chemistry, 2016, 25, 947-956.	7.1	82
180	Removal of dyes from aqueous solutions using activated carbon prepared from rice husk residue. Water Science and Technology, 2016, 73, 1122-1128.	1.2	27

#	Article	IF	CITATIONS
181	Partial oxidation of ethylbenzene by H2O2 on VOx/HZSM-22 catalyst. RSC Advances, 2016, 6, 55463-55471.	1.7	13
182	Unique Steric Effect of Geminal Bis(silane) To Control the High <i>Exo</i> -selectivity in Intermolecular Diels–Alder Reaction. Journal of the American Chemical Society, 2016, 138, 1877-1883.	6.6	68
183	Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts. Applied Catalysis B: Environmental, 2016, 187, 375-385.	10.8	113
184	Insights into the Mechanistic Role of Diphenylphosphine Selenide, Diphenylphosphine, and Primary Amines in the Formation of CdSe Monomers. Journal of Physical Chemistry A, 2016, 120, 918-931.	1.1	7
185	Low-temperature CO2 reforming of methane on Zr-promoted Ni/SiO2 catalyst. Fuel Processing Technology, 2016, 144, 1-7.	3.7	62
186	Theoretical study of the catalytic oxidation mechanism of 5-hydroxymethylfurfural to 2,5-diformylfuran by PMo-containing Keggin heteropolyacid. Catalysis Science and Technology, 2016, 6, 3776-3787.	2.1	29
187	Production of Î ³ -valerolactone via selective catalytic conversion of hemicellulose in pubescens without addition of external hydrogen. Green Chemistry, 2016, 18, 848-857.	4.6	33
188	Theoretical Studies on the Asymmetric Baeyer–Villiger Oxidation Reaction of 4â€Phenylcyclohexanone with <i>m</i> â€Chloroperoxobenzoic Acid Catalyzed by Chiral Scandium(III)– <i>N</i> , <i>N</i> â€2â€Dioxide Complexes. Chemistry - A European Journal, 2015, 21, 7264-7277.	1.7	16
189	Fractional Pyrolysis of Algae and Model Compounds. Chinese Journal of Chemical Physics, 2015, 28, 525-532.	0.6	15
190	Study on the conversion of cyanobacteria of Taihu Lake water blooms to biofuels. Biomass and Bioenergy, 2015, 73, 95-101.	2.9	19
191	The preparation of Fe/wood-based activated carbon catalyst for phenol hydroxylation from Fe ²⁺ and Fe ³⁺ precursors. Catalysis Science and Technology, 2015, 5, 2486-2495.	2.1	15
192	Reversal of enantioselective Friedel–Crafts C3-alkylation of pyrrole by slightly tuning the amide units of N,N′-dioxide ligands. Chemical Communications, 2015, 51, 8432-8435.	2.2	54
193	Mechanistic Study of Glucose-to-Fructose Isomerization in Water Catalyzed by [Al(OH) ₂ (aq)] ⁺ . ACS Catalysis, 2015, 5, 5097-5103.	5.5	161
194	Promoting Effect of Sodium Chloride on the Solubilization and Depolymerization of Cellulose from Raw Biomass Materials in Water. ChemSusChem, 2015, 8, 1901-1907.	3.6	120
195	Novel 1,8-naphthalimide derivatives for standard-red organic light-emitting device applications. Journal of Materials Chemistry C, 2015, 3, 5259-5267.	2.7	29
196	Catalytic reduction of NO by CO on Rh ₄ ⁺ clusters: a density functional theory study. Catalysis Science and Technology, 2015, 5, 3203-3215.	2.1	12
197	Theoretical insight into the C–H and C–C scission mechanism of ethane on a tetrahedral Pt ₄ subnanocluster. RSC Advances, 2015, 5, 40978-40988.	1.7	4
198	The production of diesel-like hydrocarbons from palmitic acid over HZSM-22 supported nickel phosphide catalysts. Applied Catalysis B: Environmental, 2015, 174-175, 504-514.	10.8	76

#	Article	IF	CITATIONS
199	The role of H ₃ PO ₄ in the preparation of activated carbon from NaOH-treated rice husk residue. RSC Advances, 2015, 5, 32626-32636.	1.7	125
200	Efficient production of biodiesel from both esterification and transesterification over supported SO42⒒–MoO3–ZrO2–Nd2O3/SiO2 catalysts. Journal of Energy Chemistry, 2015, 24, 463-471.	7.1	14
201	The structure, carbon deposition and stability of a ZrO _x /Ni–MnO _x /SiO ₂ catalyst for the CO ₂ reforming of methane. RSC Advances, 2015, 5, 90168-90177.	1.7	28
202	Effect of CO2 on the structural variation of Na2WO4/Mn/SiO2 catalyst for oxidative coupling of methane to ethylene. Journal of Energy Chemistry, 2015, 24, 394-400.	7.1	22
203	Theoretical Study on the Catalytic Reduction Mechanism of NO by CO on Tetrahedral Rh4 Subnanocluster. Journal of Physical Chemistry A, 2015, 119, 11548-11564.	1.1	13
204	Preparation of Fe/activated carbon directly from rice husk pyrolytic carbon and its application in catalytic hydroxylation of phenol. RSC Advances, 2015, 5, 4984-4992.	1.7	48
205	Stability and deactivation research of RuO2-PdO/Ti electrode in dye water degradation. Water Science and Technology, 2014, 70, 757-762.	1.2	3
206	Theoretical Insight into the Coordination of Cyclic β- <scp>d</scp> -Glucose to [Al(OH)(aq)] ²⁺ and [Al(OH) ₂ (aq)] ¹⁺ Ions. Journal of Physical Chemistry B, 2014, 118, 13890-13902.	1.2	23
207	Fractional pyrolysis of Cyanobacteria from water blooms over HZSM-5 for high quality bio-oil production. Journal of Energy Chemistry, 2014, 23, 732-741.	7.1	38
208	Activation of propane C–H and C–C bonds by a diplatinum cluster: potential energy surfaces and reaction mechanisms. Structural Chemistry, 2014, 25, 471-481.	1.0	9
209	One step C–N bond formation from alkylbenzene and ammonia over Cu-modified TS-1 zeolite catalyst. Catalysis Science and Technology, 2014, 4, 3108-3119.	2.1	3
210	Direct amination of benzene to aniline by reactive distillation method over copper doped hierarchical TS-1 catalyst. Catalysis Science and Technology, 2014, 4, 639-647.	2.1	21
211	The degradation of the lignin in Phyllostachys heterocycla cv. pubescens in an ethanol solvothermal system. Green Chemistry, 2014, 16, 3107-3116.	4.6	91
212	Oneâ€pot, Oneâ€step Synthesis of 2,5â€Diformylfuran from Carbohydrates over Moâ€Containing Keggin Heteropolyacids. ChemSusChem, 2014, 7, 3541-3547.	3.6	74
213	Selective dissociation and conversion of hemicellulose in Phyllostachys heterocycla cv. var. pubescens to value-added monomers via solvent-thermal methods promoted by AlCl3. RSC Advances, 2014, 4, 24194-24206.	1.7	32
214	Application of Fe/Activated Carbon Catalysts in the Hydroxylation of Phenol to Dihydroxybenzenes. Industrial & Engineering Chemistry Research, 2014, 53, 2932-2939.	1.8	43
215	Selective conversion of lignin in corncob residue to monophenols with high yield and selectivity. Green Chemistry, 2014, 16, 4257-4265.	4.6	113
216	Direct amination of benzene to aniline with H ₂ O ₂ and NH ₃ ·H ₂ O over Cu/SiO ₂ catalyst. Catalysis Science and Technology, 2014, 4, 3159-3167.	2.1	19

#	Article	IF	CITATIONS
217	Selective Conversion of Cellulose in Corncob Residue to Levulinic Acid in an Aluminum Trichloride–Sodium Chloride System. ChemSusChem, 2014, 7, 2482-2488.	3.6	68
218	Mechanistic Study of the Role of Primary Amines in Precursor Conversions to Semiconductor Nanocrystals at Low Temperature. Angewandte Chemie - International Edition, 2014, 53, 6898-6904.	7.2	24
219	Reaction mechanism on the activation of ethane C–H and C–C bonds by a diplatinum cluster. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	10
220	Comparative study on the promotion effect of Mn and Zr on the stability of Ni/SiO2 catalyst for CO2 reforming of methane. International Journal of Hydrogen Energy, 2013, 38, 7268-7279.	3.8	76
221	Nitrogenâ€Rich Energetic Ionic Liquids Based on the <i>N</i> , <i>N</i> â€Bis(1 <i>H</i> â€tetrazolâ€5â€yl)amine Anion – Syntheses, Structures, and Properties. European Journal of Inorganic Chemistry, 2013, 2013, 5009-5019.	1.0	25
222	Theoretical study on the reaction mechanism of NO and CO catalyzed by Rh atom. Structural Chemistry, 2013, 24, 13-23.	1.0	9
223	Effect of molar ratio of citric acid to metal nitrate on the structure and catalytic activity of NiO nanoparticles. Chemical Research in Chinese Universities, 2013, 29, 154-158.	1.3	7
224	Theoretical Enthalpies of Formation of [AA]X and [AAE]X Type Amino Acid Ionic Liquids. Journal of Chemical & Engineering Data, 2013, 58, 1176-1185.	1.0	11
225	The preparation and properties of Cu doped TS-1 zeolite. RSC Advances, 2013, 3, 21628.	1.7	8
226	Effect of methane co-feeding on the selectivity of ethylene produced from oxidative dehydrogenation of ethane with CO2 over a Ni-La/SiO2 catalyst. Journal of Energy Chemistry, 2013, 22, 653-658.	7.1	16
227	A Theoretical Investigation on the Strecker Reaction Catalyzed by a Ti ^{IV} omplex Catalyst Generated from a Cinchona Alkaloid, Achiral Substituted 2,2′â€Biphenol, and Tetraisopropyl Titanate. Chemistry - A European Journal, 2013, 19, 1637-1646.	1.7	8
228	AlCl3 catalyzed conversion of hemicellulose in corn stover. Chinese Journal of Catalysis, 2013, 34, 2146-2152.	6.9	31
229	Selective ring CH bonds activation of toluene over Fe/activated carbon catalyst. Journal of Molecular Catalysis A, 2013, 377, 143-153.	4.8	20
230	Phenol hydroxylation over Fe-incorporated mesoporous materials prepared by coprecipitation. Microporous and Mesoporous Materials, 2013, 182, 62-72.	2.2	48
231	High yield of ethyl valerate from the esterification of renewable valeric acid catalyzed by amino acid ionic liquids. RSC Advances, 2013, 3, 4806.	1.7	49
232	Catalytic pyrolysis of natural algae from water blooms over nickel phosphide for high quality bio-oil production. RSC Advances, 2013, 3, 10806.	1.7	41
233	The effect of hydrochloric acid on the conversion of glucose to 5-hydroxymethylfurfural in AlCl3–H2O/THF biphasic medium. Journal of Molecular Catalysis A, 2013, 376, 98-102.	4.8	65
234	Synthesis gas production from CO2 reforming of methane over Ni–Ce/SiO2 catalyst: The effect of calcination ambience. International Journal of Hydrogen Energy, 2013, 38, 117-126.	3.8	67

#	Article	IF	CITATIONS
235	Theoretical study on the mechanism of Pd(OAc)2 catalyzed dehydrogenative cross-coupling of two heteroarenes. RSC Advances, 2013, 3, 20772.	1.7	5
236	Activation of Propane C-H and C-C Bonds by Gas-Phase Pt Atom: A Theoretical Study. International Journal of Molecular Sciences, 2012, 13, 9278-9297.	1.8	15
237	Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl ₃ ·6H ₂ O catalyst in a biphasic solvent system. Green Chemistry, 2012, 14, 509-513.	4.6	298
238	Hydroxylation mechanism of methane and its derivatives over designed methane monooxygenase model with peroxo dizinc core. Organic and Biomolecular Chemistry, 2012, 10, 3924.	1.5	4
239	Hydroxylation of Benzene by Activated Carbon Catalyst. Chinese Journal of Catalysis, 2012, 33, 1622-1630.	6.9	30
240	Theoretical investigation on copper hydrides catalyzed hydrosilylation reaction of 3-methylcyclohex-2-enone: mechanism and ligands' effect. Catalysis Science and Technology, 2012, 2, 564-569.	2.1	8
241	Methane dehydrogenation on monomeric Rh center located on (100) γ-alumina — A theoretical study. Surface Science, 2012, 606, 1899-1905.	0.8	4
242	Elucidating active species and mechanism of the direct oxidation of benzene to phenol with hydrogen peroxide catalyzed by vanadium-based catalysts using DFT calculations. RSC Advances, 2012, 2, 2329.	1.7	8
243	Integration of extraction and transesterification of lipid from jatropha seeds for the production of biodiesel. Applied Energy, 2012, 98, 540-547.	5.1	29
244	One-pot synthesis of 5-hydroxymethylfurfural directly from starch over <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>SO</mml:mtext></mml:mrow><mm solid catalyst. Bioresource Technology, 2012, 116, 302-306.</mm </mml:msubsup></mml:mrow></mml:math 	l:mrow>≺ı	nml:mn>4
245	Activation of C–H and C–C bonds of ethane by gas-phase Pt atom: Potential energy surface and reaction mechanism. Computational and Theoretical Chemistry, 2012, 994, 112-120.	1.1	16
246	Continuous Flow Reactor for Hydroxylation of Benzene to Phenol by Hydrogen Peroxide. Chinese Journal of Chemical Physics, 2012, 25, 585-591.	0.6	7
247	Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate. Applied Energy, 2012, 99, 80-84.	5.1	131
248	CO ₂ reforming of methane over Mg-promoted Ni/SiO ₂ catalysts: the influence of Mg precursors and impregnation sequences. Catalysis Science and Technology, 2012, 2, 529-537.	2.1	55
249	Aromatic C–N bond formation via simultaneous activation of C–H and N–H bonds: direct oxyamination of benzene to aniline. Green Chemistry, 2012, 14, 1880.	4.6	21
250	Synthesis of Furfural from Xylose, Xylan, and Biomass Using AlCl ₃ â<6 H ₂ O in Biphasic Media via Xylose Isomerization to Xylulose. ChemSusChem, 2012, 5, 405-410.	3.6	172
251	Simultaneous separation and selective conversion of hemicellulose in Pubescen in water–cyclohexane solvent. Carbohydrate Polymers, 2012, 88, 1342-1347.	5.1	22
252	Conversion of glucose into furans in the presence of AlCl3 in an ethanol–water solvent system. Bioresource Technology, 2012, 116, 190-194.	4.8	162

#	Article	IF	CITATIONS
253	Effect of zirconium addition on vanadium-catalyzed toluene oxidation by H2O2 in CH3COOH. Journal of Molecular Catalysis A, 2012, 357, 1-10.	4.8	21
254	Nature of vanadium species on vanadium silicalite-1 zeolite and their stability in hydroxylation reaction of benzene to phenol. Catalysis Science and Technology, 2011, 1, 1060.	2.1	50
255	DFT Insight into CO Oxidation Catalyzed by Gold Nanoclusters: Charge Effect and Multi-State Reactivity. Journal of Physical Chemistry Letters, 2011, 2, 2972-2977.	2.1	68
256	A One-Pot Two-Step Approach for the Catalytic Conversion of Glucose into 2,5-Diformylfuran. Catalysis Letters, 2011, 141, 735-741.	1.4	67
257	Theoretical study on the gas-phase reaction mechanism between rhodium monoxide cation and methane. Structural Chemistry, 2011, 22, 983-997.	1.0	6
258	Microporous carbon molecular sieve as a novel catalyst for the hydroxylation of phenol. Microporous and Mesoporous Materials, 2011, 143, 22-29.	2.2	19
259	Recent advances in the catalytic pyrolysis of biomass. Frontiers of Chemical Science and Engineering, 2011, 5, 188-193.	2.3	15
260	Cetane Number Prediction of Biodiesel from the Composition of the Fatty Acid Methyl Esters. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 415-423.	0.8	101
261	Theoretical study on the gasâ€phase reaction mechanism between palladium monoxide and methane. Journal of Computational Chemistry, 2011, 32, 3440-3455.	1.5	6
262	The promoting effect of La, Mg, Co and Zn on the activity and stability of Ni/SiO2 catalyst for CO2 reforming of methane. International Journal of Hydrogen Energy, 2011, 36, 7094-7104.	3.8	162
263	One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst. Applied Energy, 2011, 88, 3313-3317.	5.1	127
264	Effect of calcination temperature on the structure and hydroxylation activity of Ni0.5Cu0.5Fe2O4 nanoparticles. Applied Surface Science, 2011, 257, 6256-6263.	3.1	17
265	Water-promoted One-step Anodic Acetoxylation of Benzene to Phenyl Acetate with High Selectivity. Chinese Journal of Chemical Physics, 2011, 24, 244-248.	0.6	2
266	Direct Synthesis of Phenol from Benzene on an Activated Carbon Catalyst Treated with Nitric Acid. Chinese Journal of Chemical Physics, 2011, 24, 358-364.	0.6	16
267	Theoretical study on the gasâ€phase reaction mechanism between rhodium monoxide and methane for methanol production. Journal of Computational Chemistry, 2010, 31, 938-953.	1.5	8
268	Effect of the Interference Instant of Zeolite HY Catalyst on the Pyrolysis of Pubescens. Chinese Journal of Chemical Engineering, 2010, 18, 351-354.	1.7	14
269	Influence of ZSM-5 zeolite on the pyrolytic intermediates from the co-pyrolysis of pubescens and LDPE. Energy Conversion and Management, 2010, 51, 1025-1032.	4.4	42
270	Theoretical Study on Heteroâ€Điels–Alder Reaction of Butadiene with Benzaldehyde Catalyzed by Chiral In ^{III} Complexes. European Journal of Organic Chemistry, 2010, 2010, 3867-3875.	1.2	6

#	Article	IF	CITATIONS
271	Theoretical Investigations on the Mechanism of Heteroâ€Diels–Alder Reactions of Brassard's Diene and 1, 3â€Butadiene Catalyzed by a Tridentate Schiff Base Titanium(IV) Complex. Chemistry - A European Journal, 2010, 16, 4359-4367.	1.7	11
272	Oxidative coupling of 2,6â€dimethylphenol catalyzed by copper(II) complexes in aqueous solution. Journal of Applied Polymer Science, 2010, 118, 2043-2049.	1.3	4
273	The Co-promotion effect of Mo and Nd on the activity and stability of sulfated zirconia-based solid acids in esterification. Applied Catalysis A: General, 2010, 389, 46-51.	2.2	29
274	Selective activation of C–H bonds on the ring of ethylbenzene catalyzed by several diperoxovanadate complexes. Journal of Molecular Catalysis A, 2010, 331, 71-77.	4.8	8
275	The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresource Technology, 2010, 101, 4593-4599.	4.8	299
276	Two-step hydrothermal conversion of Pubescens to obtain furans and phenol compounds separately. Bioresource Technology, 2010, 101, 8873-8880.	4.8	21
277	THEORETICAL STUDY ON METHANE HYDROXYLATION BY MIMIC METHANE MONOOXYGENASE WITH bis(μ-OXO)DIMANGANESE CORE. Journal of Theoretical and Computational Chemistry, 2010, 09, 233-247.	1.8	1
278	New Coâ [~] 'La/SiO ₂ Catalyst for the Simultaneous Production of C ₂ H ₄ and Syngas from CH ₄ with Na ₂ WO ₄ /Mn/SiO ₂ . Industrial & Engineering Chemistry Research, 2010, 49, 2078-2083.	1.8	9
279	Effect of preparation method on the surface properties and activity of Ni0.7Cu0.3Fe2O4 nanoparticles. Journal of Alloys and Compounds, 2010, 493, 55-63.	2.8	19
280	Palladium(II)-Catalyzed Oxidative Câ^'H/Câ^'H Cross-Coupling of Heteroarenes. Journal of the American Chemical Society, 2010, 132, 1822-1824.	6.6	413
281	The effect of Cu content on the structure of Ni1â^'xCuxFe2O4 spinels. Materials Research Bulletin, 2009, 44, 2160-2168.	2.7	58
282	Theoretical Study on Mechanism of Hydroformylation of Ethene Catalyzed by a Heterobimetallic Rh(I) r Complex. Chinese Journal of Chemistry, 2009, 27, 81-87.	2.6	4
283	Theoretical study on the gasâ€phase reaction mechanism between nickel monoxide and methane for syngas production. Journal of Computational Chemistry, 2009, 30, 847-863.	1.5	5
284	Effects of vanadium(V)-substitution on the oxidative properties of α-Keggin-type heteropolyanion clusters—progress in DFT theoretical studies. Science in China Series B: Chemistry, 2009, 52, 2096-2105.	0.8	3
285	Na2WO4/Mn/SiO2 catalyst for oxidative dehydrogenation of ethane using CO2 as oxidant. Catalysis Today, 2009, 148, 310-315.	2.2	33
286	Partial Oxidation of Toluene in CH ₃ COOH by H ₂ O ₂ in the Presence of VO (acac) ₂ Catalyst. Journal of Physical Chemistry C, 2009, 113, 14270-14278.	1.5	61
287	Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42â^'/ZrO2 and SO42â^'/ZrO2–Al2O3 solid acid catalysts. Catalysis Communications, 2009, 10, 1558-1563.	1.6	248
288	Highly Efficient Amine Organocatalysts Based on Bispidine for the Asymmetric Michael Addition of Ketones to Nitroolefins. Advanced Synthesis and Catalysis, 2008, 350, 2001-2006.	2.1	62

#	Article	IF	CITATIONS
289	Asymmetric Direct Aldol Reaction of Functionalized Ketones Catalyzed by Amine Organocatalysts Based on Bispidine. Journal of the American Chemical Society, 2008, 130, 5654-5655.	6.6	162
290	Studies on Phenol Oxidation with H2O2Catalyzed by Schiff Base Cobalt(II) Complexes in Micellar Solution. Journal of Dispersion Science and Technology, 2008, 29, 1476-1483.	1.3	6
291	Studies on the Phenol Oxidation by H2O2 Catalyzed by Metallomicelle Made from Crowned Schiff Base Co(II) Complexes Containing Benzoaza-15-crown-5. Journal of Dispersion Science and Technology, 2008, 29, 1195-1202.	1.3	4
292	Computational Investigation on Stereochemistry in Titaniumâ^'Salicylaldehydes-Catalyzed Cyanation of Benzaldehyde. Journal of Organic Chemistry, 2008, 73, 4840-4847.	1.7	10
293	A DFT STUDY ON THE REACTION MECHANISM OF SrO + CH4. Journal of Theoretical and Computational Chemistry, 2008, 07, 189-203.	1.8	5
294	Direct Amination of Benzene to Aniline by Aqueous Ammonia and Hydrogen Peroxide over Vâ°'Ni/Al2O3Catalyst with Catalytic Distillation. Industrial & Engineering Chemistry Research, 2007, 46, 3443-3445.	1.8	16
295	Selective Oxidation of Toluene with Hydrogen Peroxide Catalyzed by V-Mo-based Catalyst. Chemical Research in Chinese Universities, 2007, 23, 585-591.	1.3	2
296	Chemical Vapor Generation for Determination of Mercury by Inductively Coupled Plasma Mass Spectrometry. Applied Spectroscopy Reviews, 2007, 42, 79-102.	3.4	32
297	Dual catalyst bed for the oxidation of CH ₄ simultaneously to C ₂ H ₄ and syngas. AICHE Journal, 2007, 53, 2925-2931.	1.8	14
298	Studies on PNPP Hydrolysis Catalyzed by Schiff Base Cobalt(II) Complexes Containing Benzoaza-15-crown-5. Chinese Journal of Chemistry, 2007, 25, 765-771.	2.6	12
299	La-promoted Na2WO4/Mn/SiO2 catalysts for the oxidative conversion of methane simultaneously to ethylene and carbon monoxide. Applied Catalysis A: General, 2007, 323, 126-134.	2.2	56
300	Low temperature hydroxylation of benzene to phenol by hydrogen peroxide over Fe/activated carbon catalyst. Journal of Molecular Catalysis A, 2007, 272, 169-173.	4.8	66
301	Na2WO4/Co–Mn/SiO2 Catalyst for the Simultaneous Production of Ethylene and Syngas from CH4. Catalysis Letters, 2007, 118, 285-289.	1.4	6
302	Study of the Effect of Gas Space Time on the Combination of Methane Gas-Phase Oxidation and Catalytic Oxidative Coupling over Mn/Na2WO4/SiO2Catalyst. Industrial & Engineering Chemistry Research, 2006, 45, 7090-7095.	1.8	19
303	Sodium metavanadate catalyzed direct hydroxylation of benzene to phenol with hydrogen peroxide in acetonitrile medium. Journal of Molecular Catalysis A, 2006, 253, 1-7.	4.8	60
304	A quantum chemical study on the mechanism of chiral N-oxides-catalyzed Strecker reaction. Tetrahedron, 2006, 62, 4071-4080.	1.0	15
305	Theoretical study on the reaction of methane and zinc oxide in gas phase. Computational and Theoretical Chemistry, 2006, 778, 41-48.	1.5	19
306	Simultaneous Production of Syngas and Ethylene from Methane by Combining its Catalytic Oxidative Coupling over Mn/Na2WO4/SiO2 with Gas Phase Partial Oxidation. Catalysis Letters, 2006, 106, 161-165.	1.4	24

#	Article	IF	CITATIONS
307	Theoretical study on the reaction mechanism of CH4 with CaO. Chemical Physics, 2006, 330, 343-348.	0.9	26
308	Catalytic oxidation performance of the α-Keggin-type vanadium-substituted heteropolymolybdates: A density functional theory study on [PVnMo12â^'nO40](3+n)â^' (n=0–3n=0–3). Journal of Catalysis, 2006, 240, 23-30.	3.1	33
309	Studies on PNPP Hydrolysis Catalyzed by Schiff Base Cobalt(II) Complexes. Chinese Journal of Chemistry, 2006, 24, 1498-1504.	2.6	14
310	Hydrolysis of phosphate diester catalysed by transition metal complexes of a salicylaldimine Schiff base bearing dibenzo-18-crown-6. Journal of Chemical Research, 2005, 2005, 130-134.	0.6	5
311	Theoretical study on the mechanism of the reaction of Li2O with CH4. Computational and Theoretical Chemistry, 2005, 719, 201-206.	1.5	4
312	Room temperature direct oxidation of benzene to phenol using hydrogen peroxide in the presence of vanadium-substituted heteropolymolybdates. Applied Catalysis A: General, 2005, 278, 251-261.	2.2	117
313	The catalytic oxidation of phenol with H2O2 by metalloporphyrins as peroxidase mimics. Reaction Kinetics and Catalysis Letters, 2005, 85, 269-276.	0.6	4
314	Study on phenol oxidation with H2O2. Journal of the Serbian Chemical Society, 2005, 70, 1137-1146.	0.4	20
315	Comparative Reactivity of Phosphate Ester Hydrolysis Catalyzed by Mononuclear and Hetero-Dinuclear Complexes Containing the Lanthanum Ion (III). Transition Metal Chemistry, 2004, 29, 361-367.	0.7	7
316	A Kinetic Study of Phenolic Oxidation by H2O2Using the Schiff Base Complexes As Mimetic Peroxidases. Transition Metal Chemistry, 2004, 29, 388-393.	0.7	28
317	Title is missing!. Transition Metal Chemistry, 2003, 28, 782-787.	0.7	12
318	Theoretical Study on the Mechanism of the Reaction of CH4+ MgO. Journal of Physical Chemistry A, 2003, 107, 2316-2323.	1.1	27
319	Quantum chemical study on enantioselective reduction of aromatic ketones catalyzed by chiral cyclic sulfur-containing oxazaborolidines. Part 1. Structures and properties of catalysts. International Journal of Quantum Chemistry, 2000, 78, 245-251.	1.0	8
320	Catalytic Conversion of Chitosan to Glucosaminic Acid by Tandem Hydrolysis and Oxidation. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	8
321	Aqueous Phase Selective Hydrogenation of Lignin-Derived Phenols to Cyclohexanols Over Pd/Î ³ -Al2O3. Topics in Catalysis, 0, , 1.	1.3	2