Ning Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4356219/publications.pdf

Version: 2024-02-01

33	684	17 h-index	25
papers	citations		g-index
36	36	36	735
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds. Hydrological Processes, 2015, 29, 2331-2345.	1.1	80
2	Impact of SWMM Catchment Discretization: Case Study in Syracuse, New York. Journal of Hydrologic Engineering - ASCE, 2014, 19, 223-234.	0.8	61
3	Nextâ€Generation Intensityâ€Durationâ€Frequency Curves for Hydrologic Design in Snowâ€Dominated Environments. Water Resources Research, 2018, 54, 1093-1108.	1.7	58
4	Evaluating the functionality and streamflow impacts of explicitly modelling forest–snow interactions and canopy gaps in a distributed hydrologic model. Hydrological Processes, 2018, 32, 2128-2140.	1.1	49
5	Regional Snow Parameters Estimation for Largeâ€Domain Hydrological Applications in the Western United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5296-5313.	1.2	38
6	Climate and land cover effects on the temperature of Puget Sound streams. Hydrological Processes, 2016, 30, 2286-2304.	1.1	37
7	A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality. Hydrological Processes, 2016, 30, 4779-4798.	1.1	34
8	Observed Spatiotemporal Changes in the Mechanisms of Extreme Water Available for Runoff in the Western United States. Geophysical Research Letters, 2019, 46, 767-775.	1.5	26
9	Characterizing the Non-linear Interactions Between Tide, Storm Surge, and River Flow in the Delaware Bay Estuary, United States. Frontiers in Marine Science, 2021, 8, .	1.2	22
10	Next-Generation Intensity–Duration–Frequency Curves to Reduce Errors in Peak Flood Design. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	0.8	21
11	Floods due to Atmospheric Rivers along the U.S. West Coast: The Role of Antecedent Soil Moisture in a Warming Climate. Journal of Hydrometeorology, 2020, 21, 1827-1845.	0.7	21
12	Assessment of the SWMM model uncertainties within the generalized likelihood uncertainty estimation (GLUE) framework for a high-resolution urban sewershed. Hydrological Processes, 2013, 28, n/a-n/a.	1.1	19
13	Roles of Irrigation and Reservoir Operations in Modulating Terrestrial Water and Energy Budgets in the Indian Subcontinental River Basins. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12915-12936.	1.2	19
14	Projecting spatiotemporally explicit effects of climate change on stream temperature: A model comparison and implications for coldwater fishes. Journal of Hydrology, 2020, 588, 125066.	2.3	19
15	Greater vulnerability of snowmelt-fed river thermal regimes to a warming climate. Environmental Research Letters, 2021, 16, 054006.	2.2	19
16	Assessing the impacts of hydrologic and land use alterations on water temperature in the Farmington River basin in Connecticut. Hydrology and Earth System Sciences, 2019, 23, 4491-4508.	1.9	18
17	Balancing Water Sustainability and Productivity Objectives in Microalgae Cultivation: Siting Open Ponds by Considering Seasonal Water-Stress Impact Using AWARE-US. Environmental Science & Eamp; Technology, 2020, 54, 2091-2102.	4.6	17
18	Forest Canopy Density Effects on Snowpack Across the Climate Gradients of the Western United States Mountain Ranges. Water Resources Research, 2022, 58, .	1.7	16

#	Article	IF	CITATIONS
19	Coupling human preferences with biophysical processes: modeling the effect of citizen attitudes on potential urban stormwater runoff. Urban Ecosystems, 2016, 19, 1433-1454.	1.1	14
20	Evaluating nextâ€generation intensity–duration–frequency curves for design flood estimates in the snowâ€dominated western United States. Hydrological Processes, 2020, 34, 1255-1268.	1.1	14
21	Growth modeling to evaluate alternative cultivation strategies to enhance national microalgal biomass production. Algal Research, 2020, 49, 101939.	2.4	14
22	Parallel Distributed Hydrology Soil Vegetation Model (DHSVM) using global arrays. Environmental Modelling and Software, 2019, 122, 104533.	1.9	11
23	Incorporating Climate Nonstationarity and Snowmelt Processes in Intensity–Duration–Frequency Analyses with Case Studies in Mountainous Areas. Journal of Hydrometeorology, 2019, 20, 2331-2346.	0.7	10
24	Next-Generation Intensity-Duration-Frequency Curves for Climate-Resilient Infrastructure Design: Advances and Opportunities. Frontiers in Water, 2020, 2, .	1.0	8
25	The impact of <scp>forestâ€controlled</scp> snow variability on <scp>lateâ€season</scp> streamflow varies by climatic region and forest structure. Hydrological Processes, 2022, 36, .	1.1	8
26	Impacts of urbanization, antecedent rainfall event, and cyclone tracks on extreme floods at Houston reservoirs during Hurricane Harvey. Environmental Research Letters, 2020, 15, 124012.	2.2	7
27	Climatological analysis of tropical cyclone impacts on hydrological extremes in the Mid-Atlantic region of the United States. Environmental Research Letters, 2021, 16, 124009.	2.2	6
28	Datasets for characterizing extreme events relevant to hydrologic design over the conterminous United States. Scientific Data, 2022, 9, 154.	2.4	5
29	Mechanistic Simulations Suggest Riparian Restoration Can Partly Counteract Climate Impacts to Juvenile Salmon. Journal of the American Water Resources Association, 2022, 58, 525-546.	1.0	5
30	Realâ€time ensemble microalgae growth forecasting with data assimilation. Biotechnology and Bioengineering, 2021, 118, 1419-1424.	1.7	4
31	mosartwmpy: A Python implementation of the MOSART-WM coupled hydrologic routing and water management model. Journal of Open Source Software, 2021, 6, 3221.	2.0	2
32	The Urban Hydrological System. , 2019, , 119-136.		1
33	Enhancing Hydrologic Design by Next-Generation Intensity-Duration-Frequency Curves Considering Snowmelt and Climate Nonstationarity. , 2019, , .		1