
Colin Webb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4356125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cereal-based fermented foods and beverages. Food Research International, 2003, 36, 527-543.	6.2	759
2	Application of cereals and cereal components in functional foods: a review. International Journal of Food Microbiology, 2002, 79, 131-141.	4.7	564
3	Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochemical Engineering Journal, 1998, 1, 171-190.	3.6	219
4	Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. International Journal of Food Microbiology, 2003, 82, 133-141.	4.7	192
5	Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochemistry, 2007, 42, 98-101.	3.7	190
6	A techno-economic analysis of biodiesel biorefineries: Assessment of integrated designs for the co-production of fuels and chemicals. Energy, 2011, 36, 4671-4683.	8.8	185
7	Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates. Journal of Applied Microbiology, 2002, 92, 851-859.	3.1	183
8	Distribution of microbial contamination within cereal grains. Journal of Food Engineering, 2006, 72, 332-338.	5.2	169
9	Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochemical Engineering Journal, 2008, 41, 128-135.	3.6	169
10	Treatment of H2S-containing gases: A review of microbiological alternatives. Enzyme and Microbial Technology, 1995, 17, 2-10.	3.2	161
11	Ferrous sulphate oxidation using thiobacillus ferrooxidans: a review. Process Biochemistry, 1995, 30, 225-236.	3.7	151
12	The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel, 2014, 123, 33-42.	6.4	150
13	Actinobacillus succinogenes : Advances on succinic acid production and prospects for development of integrated biorefineries. Biochemical Engineering Journal, 2016, 112, 285-303.	3.6	138
14	Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochemical Engineering Journal, 2005, 26, 100-106.	3.6	131
15	A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Bioresource Technology, 2008, 99, 8310-8315.	9.6	117
16	Discrete particle motion on sieves—a numerical study using the DEM simulation. Powder Technology, 2003, 133, 190-202.	4.2	114
17	Cereal-based biorefinery development: Utilisation of wheat milling by-products for the production of succinic acid. Journal of Biotechnology, 2009, 143, 51-59.	3.8	114
18	Treatment of lead-contaminated water using activated carbon adsorbent from locally available papaya peel biowaste. Journal of Cleaner Production, 2016, 118, 210-222.	9.3	111

#	Article	IF	CITATIONS
19	On the merits of viable-cell immobilisation. Biotechnology Advances, 1991, 9, 559-612.	11.7	110
20	Flow of sphero-disc particles in rectangular hoppers—a DEM and experimental comparison in 3D. Chemical Engineering Science, 2004, 59, 5917-5929.	3.8	107
21	Glycerol utilisation for the production of chemicals: Conversion to succinic acid, a combined experimental and computational study. Biochemical Engineering Journal, 2011, 58-59, 1-11.	3.6	107
22	Microflora identification of the Bulgarian cereal-based fermented beverage boza. Process Biochemistry, 2000, 36, 127-130.	3.7	106
23	The biochemurgist –Bioconversion of agricultural raw materials for chemical production. Biofuels, Bioproducts and Biorefining, 2007, 1, 24-38.	3.7	101
24	Analysing global food waste problem: pinpointing the facts and estimating the energy content. Open Engineering, 2013, 3, 157-164.	1.6	99
25	Effect of cereal extracts and cereal fiber on viability of Lactobacillus plantarum under gastrointestinal tract conditions. Biochemical Engineering Journal, 2006, 28, 73-78.	3.6	92
26	Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method. Green Chemistry, 2009, 11, 193-200.	9.0	89
27	Bioconversion of rapeseed meal for the production of a generic microbial feedstock. Enzyme and Microbial Technology, 2010, 47, 77-83.	3.2	86
28	Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery. Enzyme and Microbial Technology, 2007, 40, 1035-1044.	3.2	84
29	Valorization of organic residues for the production of added value chemicals: A contribution to the bio-based economy. Biochemical Engineering Journal, 2016, 116, 3-16.	3.6	84
30	On predicting roller milling performance. Powder Technology, 2001, 115, 234-242.	4.2	83
31	The production of cellulase in a spouted bed fermentor using cells immobilized in biomass support particles. Biotechnology and Bioengineering, 1986, 28, 41-50.	3.3	80
32	Succinic acid production from wheat using a biorefining strategy. Applied Microbiology and Biotechnology, 2007, 76, 1263-1270.	3.6	77
33	Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces. Food and Bioproducts Processing, 2013, 91, 638-646.	3.6	77
34	Microbial oil produced from biodiesel by-products could enhance overall production. Bioresource Technology, 2013, 129, 650-654.	9.6	75
35	Tunable mesoporous materials optimised for aqueous phase esterifications. Green Chemistry, 2007, 9, 992.	9.0	72
36	Microbial biodiesel production by direct methanolysis of oleaginous biomass. Bioresource Technology, 2014, 157, 181-187.	9.6	72

#	Article	IF	CITATIONS
37	Cereal-based biorefinery development: Integrated enzyme production for cereal flour hydrolysis. Biotechnology and Bioengineering, 2007, 97, 61-72.	3.3	71
38	Practical reactor systems for yeast cell immobilization using biomass support particles. Biotechnology and Bioengineering, 1984, 26, 134-141.	3.3	70
39	Continuous enzymatic cellulose hydrolysis in a tubular membrane bioreactor. Enzyme and Microbial Technology, 2006, 38, 155-161.	3.2	67
40	Experimental validation of polyhedral discrete element model. Powder Technology, 2011, 214, 431-442.	4.2	67
41	Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised in polyurethane foam support particles. Applied Microbiology and Biotechnology, 1992, 36, 697.	3.6	66
42	A kinetic model for biological oxidation of ferrous iron byThiobacillus ferrooxidans. , 1997, 53, 478-486.		66
43	A seawater-based biorefining strategy for fermentative production and chemical transformations of succinic acid. Energy and Environmental Science, 2011, 4, 1471.	30.8	64
44	Microbial biodegradable plastic production from a wheat-based biorefining strategy. Process Biochemistry, 2010, 45, 153-163.	3.7	63
45	Kinetic studies on the multi-enzyme solution produced via solid state fermentation of waste bread by Aspergillus awamori. Biochemical Engineering Journal, 2013, 80, 76-82.	3.6	63
46	New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature. Geophysical Research Letters, 2017, 44, 5504-5510.	4.0	63
47	Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat. Biotechnology and Bioengineering, 2004, 85, 524-538.	3.3	61
48	Monitoring the fermentation of the traditional Bulgarian Ã ⁻ ¿½beverage boza. International Journal of Food Science and Technology, 2001, 36, 129-134.	2.7	60
49	Polygalacturonase production by Aspergillus awamori on wheat in solid-state fermentation. Applied Microbiology and Biotechnology, 2002, 58, 164-169.	3.6	59
50	On predicting roller milling performance. Powder Technology, 2001, 115, 243-255.	4.2	57
51	Cultivation modes for microbial oil production using oleaginous yeasts – A review. Biochemical Engineering Journal, 2019, 151, 107322.	3.6	55
52	Design Aspects of Solid State Fermentation as Applied to Microbial Bioprocessing. Journal of Applied Biotechnology & Bioengineering, 2017, 4, .	0.1	54
53	Influence of malt, wheat, and barley extracts on the bile tolerance of selected strains of lactobacilli. Food Microbiology, 2004, 21, 83-89.	4.2	53
54	Effect of wheat pearling on flour quality. Food Research International, 2004, 37, 449-459.	6.2	53

#	Article	IF	CITATIONS
55	Enrichment of Oat Antioxidant Activity by Dry Milling and Sieving. Journal of Cereal Science, 2000, 32, 89-98.	3.7	52
56	Submerged fermentation in wheat substrates for production of Monascus pigments. World Journal of Microbiology and Biotechnology, 2003, 19, 329-336.	3.6	51
57	Protease production and conidiation by Aspergillus oryzae in flour fermentation. Process Biochemistry, 2005, 40, 217-227.	3.7	51
58	Novel resin-based vacuum distillation-crystallisation method for recovery of succinic acid crystals from fermentation broths. Green Chemistry, 2010, 12, 666.	9.0	51
59	Solid state fermentation of waste bread pieces by Aspergillus awamori: Analysing the effects of airflow rate on enzyme production in packed bed bioreactors. Food and Bioproducts Processing, 2015, 95, 63-75.	3.6	51
60	Process Design and Optimization of Novel Wheat-Based Continuous Bioethanol Production System. Biotechnology Progress, 2007, 23, 1394-1403.	2.6	49
61	Impact of type of salt and ambient conditions on saline water evaporation from porous media. Advances in Water Resources, 2017, 105, 154-161.	3.8	49
62	A Numerical Simulation of Separation of Crop Seeds by Screening—Effect of Particle Bed Depth. Food and Bioproducts Processing, 2002, 80, 109-117.	3.6	47
63	Development of a process for the production of nutrient supplements for fermentations based on fungal autolysis. Enzyme and Microbial Technology, 2005, 36, 629-638.	3.2	47
64	Improving wheat flour hydrolysis by an enzyme mixture from solid state fungal fermentation. Enzyme and Microbial Technology, 2009, 44, 223-228.	3.2	46
65	Enhancing the value of nitrogen from rapeseed meal for microbial oil production. Enzyme and Microbial Technology, 2012, 50, 337-342.	3.2	45
66	Production and separation of a trehalolipid biosurfactant. Biochemical Engineering Journal, 2018, 139, 85-94.	3.6	45
67	Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products. Biofuel Research Journal, 2017, 4, 730-740.	13.3	44
68	Wheatâ€based biorefining strategy for fermentative production and chemical transformations of succinic acid. Biofuels, Bioproducts and Biorefining, 2012, 6, 88-104.	3.7	43
69	Selective separations in environmental and industrial processes using magnetic carrier technology. Minerals Engineering, 1994, 7, 1039-1056.	4.3	42
70	Effect of ferrous iron concentration on the catalytic activity of immobilized cells of Thiobacillus ferrooxidans. Applied Microbiology and Biotechnology, 1996, 46, 250-255.	3.6	41
71	Evaluation of wheat as generic feedstock for chemical production. Industrial Crops and Products, 2004, 20, 75-88.	5.2	40
72	Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulfate oxidation. Applied Microbiology and Biotechnology, 2000, 54, 335-340.	3.6	38

#	Article	IF	CITATIONS
73	Development of an Oat-Based Biorefinery for the Production ofl(+)-Lactic Acid byRhizopus oryzaeand Various Value-Added Coproducts. Journal of Agricultural and Food Chemistry, 2007, 55, 1755-1761.	5.2	38
74	A biorefinery approach to microbial oil production from glycerol by Rhodotorula glutinis. Biomass and Bioenergy, 2016, 89, 113-122.	5.7	38
75	A techno-economic comparison of Fischer–Tropsch and fast pyrolysis as ways of utilizing sugar cane bagasse in transportation fuels production Chemical Engineering Research and Design, 2017, 118, 206-214.	5.6	38
76	Utilisation of whole wheat flour for the production of extracellular pectinases by some fungal strains. Process Biochemistry, 2001, 37, 497-503.	3.7	36
77	Optimization of Innovative Ethanol Production from Wheat by Response Surface Methodology. Chemical Engineering Research and Design, 2007, 85, 404-412.	5.6	36
78	Immobilisation of anchorage-independent animal cells using reticulated polyvinyl formal resin biomass support particles. Applied Microbiology and Biotechnology, 1989, 30, 609.	3.6	35
79	Production of poly(3-hydroxybutyrate) from a complete feedstock derived from biodiesel by-products (crude glycerol and rapeseed meal). Biochemical Engineering Journal, 2018, 137, 358-364.	3.6	35
80	Estimation of fungal growth in complex, heterogeneous culture. Biochemical Engineering Journal, 2003, 14, 93-100.	3.6	32
81	A multicriteria comparison of utilizing sugar cane bagasse for methanol to gasoline and butanol production. Biomass and Bioenergy, 2016, 95, 436-448.	5.7	32
82	Evaluating feeding strategies for microbial oil production from glycerol by <i>Rhodotorula glutinis</i> . Engineering in Life Sciences, 2017, 17, 314-324.	3.6	32
83	Dynamic simulation of gas-liquid dispersion behaviour in a 2-D bubble column using a graphics mini-supercomputer. Chemical Engineering Science, 1992, 47, 3305-3312.	3.8	31
84	Determination of apparent kinetic parameters for competitive product inhibition in packed-bed immobilized enzyme reactors. Biochemical Engineering Journal, 2003, 14, 27-36.	3.6	31
85	Solids deposition in low-velocity slug flow pneumatic conveying. Chemical Engineering and Processing: Process Intensification, 2005, 44, 167-173.	3.6	31
86	Roof cooling by direct evaporation from a porous layer. Energy and Buildings, 2016, 127, 521-528.	6.7	31
87	Proliferation of Lactobacillus plantarum in Solid-State Fermentation of Oats. Biotechnology Progress, 2008, 20, 110-116.	2.6	30
88	The inhibition effect of methanol, as a component of crude glycerol, on the growth rate of Cupriavidus necator and other micro-organisms. Biochemical Engineering Journal, 2015, 98, 84-90.	3.6	30
89	Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation. Waste and Biomass Valorization, 2019, 10, 865-876.	3.4	30
90	A new method for determination of apparent kinetics parameters in recirculating packed-bed immobilized enzyme reactors. Chemical Engineering Science, 2001, 56, 3483-3490.	3.8	28

#	Article	IF	CITATIONS
91	Kinetic parameters of Aspergillus awamori in submerged cultivations on whole wheat flour under oxygen limiting conditions. Biochemical Engineering Journal, 2003, 16, 23-34.	3.6	28
92	Use of Waste Bread to Produce Fermentation Products. , 2013, , 63-76.		26
93	Combined biological and chemical oxidation of ferrous sulfate using immobilised <i>Thiobacillus ferrooxidans</i> . Journal of Chemical Technology and Biotechnology, 1999, 74, 562-570.	3.2	24
94	Optimization and Cost Estimation of Novel Wheat Biorefining for Continuous Production of Fermentation Feedstock. Biotechnology Progress, 2007, 23, 872-880.	2.6	24
95	The Application of a Generic Feedstock from Wheat for Microbial Fermentations. Biotechnology Progress, 2002, 18, 1033-1038.	2.6	23
96	Particulate bioprocessing: A novel process strategy for biorefineries. Process Biochemistry, 2009, 44, 546-555.	3.7	23
97	Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues. Applied Microbiology and Biotechnology, 2016, 100, 9555-9566.	3.6	23
98	Glucoamylase production and nitrogen nutrition inAspergillus awamori. Applied Biochemistry and Biotechnology, 1993, 39-40, 349-369.	2.9	21
99	Enzymatic Hydrolysis of Polysaccharides. Food and Bioproducts Processing, 2001, 79, 41-45.	3.6	21
100	Passive immobilization of Aspergillus awamori spores for subsequent glucoamylase production. Enzyme and Microbial Technology, 1989, 11, 495-499.	3.2	20
101	The effect of milling parameters on starch hydrolysis of milled malt in the brewing process. Process Biochemistry, 2004, 39, 2213-2219.	3.7	19
102	Effect of fat level, mixing pressure and temperature on dough expansion capacity during proving. Journal of Cereal Science, 2007, 46, 139-147.	3.7	19
103	Improving fermentation consistency through better inoculum preparation. World Journal of Microbiology and Biotechnology, 1993, 9, 308-312.	3.6	18
104	Development of novel wheat biorefining: Effect of gluten extraction from wheat on bioethanol production. Biochemical Engineering Journal, 2009, 43, 113-121.	3.6	18
105	Newly designed multi-stacked circular tray solid-state bioreactor: analysis of a distributed parameter gas balance during solid-state fermentation with influence of variable initial moisture content arrangements. Bioresources and Bioprocessing, 2020, 7, .	4.2	18
106	A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products. Bioresource Technology, 2012, 116, 295-301.	9.6	17
107	Building a predictive model for PHB production from glycerol. Biochemical Engineering Journal, 2016, 116, 113-121.	3.6	16
108	Succinic acid fermentation in a stationary-basket bioreactor with a packed bed of immobilized <i>Actinobacillus succinogenes</i> : 1. Influence of internal diffusion on substrate mass transfer and consumption rate. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 877-888.	3.0	15

#	Article	IF	CITATIONS
109	Production of Fermentation Feedstock from Jerusalem Artichoke Tubers and its Potential for Polyhydroxybutyrate Synthesis. Waste and Biomass Valorization, 2013, 4, 359-370.	3.4	15
110	lodine k-edge dual energy imaging reveals the influence of particle size distribution on solute transport in drying porous media. Scientific Reports, 2018, 8, 10731.	3.3	15
111	Inhibition effect of ferric iron on the kinetics of ferrous iron. Biotechnology Letters, 1998, 20, 873-877.	2.2	14
112	Immobilized Cell Bioreactors. , 2011, , 331-346.		14
113	Simulation Studies on Ethanol Production from Sugar Cane Residues. Industrial & Engineering Chemistry Research, 2016, 55, 5173-5179.	3.7	14
114	Fermentation broth rheology during dextran production by Leuconostoc mesenteroides B512(F) as a possible tool for control. Applied Microbiology and Biotechnology, 1993, 40, 251.	3.6	13
115	The magnetically stabilized fluidized bed bioreactor: a tool for improved mass transfer in immobilized enzyme systems?. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 61, 241-246.	0.1	13
116	Production of a generic microbial feedstock for lignocellulose biorefineries through sequential bioprocessing. Bioresource Technology, 2017, 227, 35-43.	9.6	13
117	Effect of cell concentration on the rheology of glucoamylase fermentation broth. Biotechnology Letters, 1995, 9, 55-58.	0.5	12
118	An Experimental Technique for the Analysis of Slug Flows in Pneumatic Pipelines Using Pressure Measurements. Particulate Science and Technology, 2002, 20, 283-303.	2.1	12
119	Dry weight model, capacitance and metabolic data as indicators of fungal biomass growth in solid state fermentation. Food and Bioproducts Processing, 2019, 114, 144-153.	3.6	12
120	Double substrate limitation model for the bio-based production of succinic acid from glycerol. Biochemical Engineering Journal, 2020, 153, 107391.	3.6	12
121	External and Internal Glucose Mass Transfers in Succinic Acid Fermentation with Stirred Bed of Immobilized Actinobacillus succinogenes under Substrate and Product Inhibitions. Journal of Microbiology and Biotechnology, 2011, 21, 1257-1263.	2.1	12
122	Bioplastics From Solid Waste. , 2017, , 1-26.		11
123	Estimating fungal growth in submerged fermentation in the presence of solid particles based on colour development. Biotechnology and Biotechnological Equipment, 2018, 32, 618-627.	1.3	11
124	A trickle bed reactor for ferrous sulphate oxidation using Thiobacillus ferrooxidans. Biotechnology Letters, 1994, 8, 87-92.	0.5	10
125	Emerging biorefinery markets: global context and prospects for Latin America. Biofuels, Bioproducts and Biorefining, 2008, 2, 331-342.	3.7	10
126	Glycerol metabolic conversion to succinic acid using Actinobacillus succinogenes. Computer Aided Chemical Engineering, 2011, 29, 1421-1425.	0.5	10

#	Article	IF	CITATIONS
127	Fractionation of Carboxylic Acids Mixture Obtained by Succinic Fermentation using Reactive Extraction. Separation Science and Technology, 2013, 48, 634-643.	2.5	10
128	Investigating a non-destructive alternative for a preliminary evaluation of fungal growth in solid state fermentations. Journal of Microbiological Methods, 2019, 160, 60-67.	1.6	10
129	Dynamic Metabolic Analysis of Cupriavidus necator DSM545 Producing Poly(3-hydroxybutyric acid) from Glycerol. Processes, 2020, 8, 657.	2.8	10
130	The role of chemical engineering in biotechnology. The Chemical Engineering Journal, 1992, 50, B9-B16.	0.3	9
131	Solid-state fermentation of food industry wastes. , 2020, , 135-161.		8
132	Title is missing!. Biotechnology Letters, 1997, 19, 39-43.	2.2	7
133	Modelling Studies of a Process to Produce a Generic Bioconversion Feedstock from Wheat. Food and Bioproducts Processing, 2003, 81, 239-249.	3.6	7
134	Modelling of ethanol evaporative losses during batch alcohol fermentation. The Chemical Engineering Journal, 1992, 48, B15-B22.	0.3	6
135	Derivation of a simple equation for the determination of kinetics coefficients in packed-bed reactors. Chemical Engineering Journal, 2006, 118, 17-22.	12.7	6
136	Biochemical production ofÂbioalcohols. , 2016, , 237-258.		6
137	Control strategies with variable air arrangements, forcefully aerated in single circular tray solid state bioreactors with modified Gompertz model and analysis of a distributed parameter gas balance. Biotechnology and Biotechnological Equipment, 2018, 32, 1455-1467.	1.3	6
138	Biorefinery Approach for Ethanol Production From Bagasse. , 2019, , 319-342.		6
139	Automatic Aseptic Sampling of Fermentation Broth. Nature Biotechnology, 1990, 8, 926-928.	17.5	5
140	Analysis of Gas-Solids Feeding and Slug Formation in Low-Velocity Pneumatic Conveying. Particulate Science and Technology, 2003, 21, 57-73.	2.1	5
141	Determination of immobilized enzyme apparent kinetic parameters in packed-bed reactors: Presentation of a new methodology. Food and Bioproducts Processing, 2008, 86, 104-108.	3.6	5
142	Bioenergy Technology and Food Industry Waste Valorization for Integrated Production of Polyhydroxyalkanoates. , 2014, , 419-433.		5
143	Optimization and Cost Estimation of Novel Wheat Biorefining for Continuous Production of Fermentation Feedstock. Biotechnology Progress, 2007, 23, 872-880.	2.6	5
144	Analysis of Performance Limitations in Immobilized Cell Fermentors. Annals of the New York Academy of Sciences, 1990, 589, 593-598.	3.8	4

#	Article	IF	CITATIONS
145	Enrichment of fermentation media and optimization of expression conditions for the production of EAK ₁₆ peptide as fusions with SUMO. Biotechnology and Bioengineering, 2009, 102, 725-735.	3.3	4
146	Comparative Analysis of Synthetic Natural Gas versus Hydrogen Production from Bagasse. Chemical Engineering and Technology, 2017, 40, 546-554.	1.5	4
147	The Manchester perspective on using the Design Project to enhance the education of chemical engineering students. Journal of Chemical Technology and Biotechnology, 2021, 96, 1453-1464.	3.2	4
148	Building a database system to take a critical look at immobilized cell fermentation technology. Trends in Biotechnology, 1988, 6, 29-32.	9.3	3
149	Fungal cell immobilisation. The Mycologist, 1989, 3, 167-170.	0.4	3
150	Particle circulation and oxygen mass transfer in an immobilized cell bioreactor. Applied Biochemistry and Biotechnology, 1987, 15, 227-244.	2.9	2
151	SIMULATION OF A TWO PHASE FLOW BY CFD: ANALYSIS OF THE COMPUTATIONAL METHOD. Chemical Engineering Communications, 1999, 173, 197-214.	2.6	2
152	Dynamic Metabolic Modelling of Cupriavidus necator DSM 545 in PHB Production from Glycerol. Computer Aided Chemical Engineering, 2016, 38, 2217-2222.	0.5	2
153	Extending shelf life of wheat based animal feed using solid state bioprocessing. Chemical Engineering Research and Design, 2016, 107, 147-152.	5.6	2
154	The Biochemical Engineering Journal. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 53, xiii.	0.1	1
155	Effect of product inhibition patterns on the effectiveness factor of immobilized cell aggregates. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 59, 309-314.	0.1	1
156	Erratum Inhibition effect of ferric iron on the kinetics of ferrous iron biooxidation. Biotechnology Letters, 1998, 20, 1095-1095.	2.2	1
157	Valorization of rice straw for ethylene and jet fuel production: a technoeconomic assessment. , 2020, , 201-221.		1
158	Multi-enzymes Production Studies in Single Tray Solid State Fermentation with Opened and Closed System. Journal of Life Sciences (Libertyville, Ill), 2016, 10, .	0.2	1
159	Water Retention Value: A Study Model-based by Asperglillus awamori and Aspergillus oryzae Embrace Three Models of Solid Substrate. Journal of Life Sciences (Libertyville, Ill), 2016, 10, .	0.2	1
160	Being industrious. Nature, 1987, 329, 371-371.	27.8	0
161	A new look. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 63, v.	0.1	0
162	Editor's preface. Biochemical Engineering Journal, 2001, 7, 89.	3.6	0

#	Article	IF	CITATIONS
163	A novel process of polyhydroxybutyrate production from wheat-based biorefinery. Journal of Biotechnology, 2007, 131, S140-S141.	3.8	0
164	Platform chemical production from wheat-based biorefining strategy. Journal of Biotechnology, 2007, 131, S145.	3.8	0
165	An integrated lignocellulose-based bioprocessing for the production of a generic microbial feedstock. New Biotechnology, 2014, 31, S98-S99.	4.4	0
166	Evaluation of Recycle Grinding Performance in Flour Milling. Journal of Applied Sciences, 2007, 7, 2126-2130.	0.3	0
167	MODELING OF SELECTIVE PERTRACTION OF CARBOXYLIC ACIDS PRODUCED BY Actinobacillus succinogenes FERMENTATION. Environmental Engineering and Management Journal, 2012, 11, 1901-1906.	0.6	0
168	Concluding Remarks and Future Prospects. , 2013, , 295-303.		0
169	The Effects of Water on Solid State Fermentation Performance. , 2019, , 151-166.		0