Christian Dwyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4355703/publications.pdf Version: 2024-02-01

CHDISTIAN DWVFD

#	Article	IF	CITATIONS
1	Structure and energetics of the coherent interface between the Î,′ precipitate phase and aluminium in Al–Cu. Acta Materialia, 2011, 59, 7043-7050.	7.9	176
2	The magic thicknesses of Î,′ precipitates in Sn-microalloyed Al–Cu. Acta Materialia, 2012, 60, 633-644.	7.9	124
3	Imaging Beam‣ensitive Materials by Electron Microscopy. Advanced Materials, 2020, 32, e1907619.	21.0	104
4	Elemental mapping at the atomic scale using low accelerating voltages. Ultramicroscopy, 2010, 110, 926-934.	1.9	87
5	Three-dimensional organization of rare-earth atoms at grain boundaries in silicon nitride. Applied Physics Letters, 2005, 87, 061911.	3.3	62
6	Stability of Crystal Facets in Gold Nanorods. Nano Letters, 2015, 15, 1635-1641.	9.1	48
7	Efficient Atomic-Scale Kinetics through a Complex Heterophase Interface. Physical Review Letters, 2013, 111, 046102.	7.8	42
8	Method to measure spatial coherence of subangstrom electron beams. Applied Physics Letters, 2008, 93, .	3.3	41
9	Performance of a direct detection camera for off-axis electron holography. Ultramicroscopy, 2016, 161, 90-97.	1.9	36
10	Crossover of Charge Fluctuations across the Strange Metal Phase Diagram. Physical Review X, 2019, 9,	8.9	34
11	Dynamic self-assembly of detonation nanodiamond in water. Nanoscale, 2020, 12, 5363-5367.	5.6	34
12	Counting vacancies and nitrogen-vacancy centers in detonation nanodiamond. Nanoscale, 2016, 8, 10548-10552.	5.6	33
13	Direct mapping of Li-enabled octahedral tiltÂordering and associated strain in nanostructuredÂperovskites. Nature Materials, 2015, 14, 1142-1149.	27.5	27
14	Rapid Measurement of Nanoparticle Thickness Profiles. Ultramicroscopy, 2013, 124, 61-70.	1.9	24
15	Prospects for quantitative and time-resolved double and continuous exposure off-axis electron holography. Ultramicroscopy, 2017, 178, 48-61.	1.9	12
16	Revealing Atomic Structure and Oxidation States of Dopants in Charge-Ordered Nanoparticles for Migration-Promoted Oxygen-Exchange Capacity. Chemistry of Materials, 2019, 31, 5769-5777.	6.7	10
17	Direct Formation of 2D-MnO _{<i>x</i>} under Conditions of Water Oxidation Catalysis. ACS Applied Nano Materials, 2018, 1, 1603-1611.	5.0	9
18	Inpainting Versus Denoising for Dose Reduction in Scanning-Beam Microscopies. IEEE Transactions on Image Processing, 2020, 29, 351-359.	9.8	7

CHRISTIAN DWYER

#	Article	IF	CITATIONS
19	Quantitative annular dark-field imaging in the scanning transmission electron microscope—a review. JPhys Materials, 2021, 4, 042006.	4.2	7
20	Subsampling and inpainting approaches for electron tomography. Ultramicroscopy, 2017, 182, 292-302.	1.9	6
21	Prospects for detecting individual defect centers using spatially resolved electron energy loss spectroscopy. Physical Review B, 2019, 100, .	3.2	5
22	Atomic and Electronic Structures of Functionalized Nanodiamond Particles. Microscopy and Microanalysis, 2017, 23, 2270-2271.	0.4	2
23	Dipole Scattering and Its Implications for Vibrational Mapping at Lattice Resolution. Microscopy and Microanalysis, 2018, 24, 410-411.	0.4	2
24	Surface and Point Defect Measurements of Detonation Nanodiamond using Combined Cs-Cc corrected TEM and ab initio Calculations. Microscopy and Microanalysis, 2016, 22, 1392-1393.	0.4	1
25	Inpainting Versus Denoising for Dose Reduction in STEM. Microscopy and Microanalysis, 2018, 24, 482-483.	0.4	1
26	Making every electron count: materials characterization by quantitative analytical scanning transmission electron microscopy. Microscopy and Microanalysis, 2016, 22, 1430-1431.	0.4	0
27	Quantification and Sensible Correction for Energy-Loss- and Thickness-Dependent Contrast Complications in Atomic-Scale Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2016, 22, 886-887.	0.4	Ο
28	Multidisciplinary Approach to Nanostructure Determination. Microscopy and Microanalysis, 2016, 22, 1426-1427.	0.4	0
29	Measurement of N-V Centers in Nanodiamond Particles using Advanced (S)TEM. Microscopy and Microanalysis, 2018, 24, 1664-1665.	0.4	0
30	Harnessing Shape Effects for Adsorbate Signal Enhancement in Vibrational EELS. Microscopy and Microanalysis, 2019, 25, 608-609.	0.4	0
31	Aggregation Behavior of Detonation Nanodiamond in Solution. Microscopy and Microanalysis, 2019, 25, 1740-1741.	0.4	О
32	Theory for High Energy Resolution EELS of Vibrational and Defect States. Microscopy and Microanalysis, 2019, 25, 616-617.	0.4	0
33	Prospects for Spatially-Resolved EELS of Atomic Point Defects. Microscopy and Microanalysis, 2019, 25, 594-595.	0.4	0