
VÃ-ctor J CarriÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4355547/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The ubiquitous catechol moiety elicits siderophore and angucycline production in Streptomyces. Communications Chemistry, 2022, 5, .	2.0	9
2	Acidic amelioration of soil amendments improves soil health by impacting rhizosphere microbial assemblies. Soil Biology and Biochemistry, 2022, 167, 108599.	4.2	26
3	Bacillus subtilis EA-CB0575 inoculation of micropropagated banana plants suppresses black Sigatoka and induces changes in the root microbiome. Plant and Soil, 2022, 479, 513-527.	1.8	2
4	Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nature Communications, 2022, 13, .	5.8	53
5	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	3.9	81
6	Successive plant growth amplifies genotype-specific assembly of the tomato rhizosphere microbiome. Science of the Total Environment, 2021, 772, 144825.	3.9	38
7	Mitigation of <i>Pseudomonas syringae</i> virulence by signal inactivation. Science Advances, 2021, 7, eabg2293.	4.7	8
8	Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation. Water Research, 2020, 169, 115215.	5.3	132
9	Atypical Spirotetronate Polyketides Identified in the Underexplored Genus <i>Streptacidiphilus</i> . Journal of Organic Chemistry, 2020, 85, 10648-10657.	1.7	10
10	Beyond Plant Microbiome Composition: Exploiting Microbial Functions and Plant Traits via Integrated Approaches. Frontiers in Bioengineering and Biotechnology, 2020, 8, 896.	2.0	44
11	Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome, 2019, 7, 114.	4.9	140
12	Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science, 2019, 366, 606-612.	6.0	621
13	Ecology and Evolution of Plant Microbiomes. Annual Review of Microbiology, 2019, 73, 69-88.	2.9	379
14	Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME Journal, 2019, 13, 738-751.	4.4	166
15	Microbial Community Composition in Take-All Suppressive Soils. Frontiers in Microbiology, 2018, 9, 2198.	1.5	46
16	Priming of Plant Growth Promotion by Volatiles of Root-Associated Microbacterium spp. Applied and Environmental Microbiology, 2018, 84, .	1.4	71
17	The wild side of plant microbiomes. Microbiome, 2018, 6, 143.	4.9	199
18	Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME Journal, 2018, 12, 2307-2321.	4.4	131

VÃCTOR J CARRIÃ³N

#	Article	IF	CITATIONS
19	Linking rhizosphere microbiome composition of wild and domesticated <i>Phaseolus vulgaris</i> to genotypic and root phenotypic traits. ISME Journal, 2017, 11, 2244-2257.	4.4	298
20	Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides. Nature Microbiology, 2017, 2, 16197.	5.9	121
21	Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen Rhizoctonia solani. Frontiers in Plant Science, 2017, 8, 1262.	1.7	78
22	Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities. Frontiers in Microbiology, 2017, 8, 1552.	1.5	41
23	Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Frontiers in Microbiology, 2015, 6, 1081.	1.5	174
24	Cellulose production in <i>Pseudomonas syringae</i> pv. <i>syringae</i> : a compromise between epiphytic and pathogenic lifestyles. FEMS Microbiology Ecology, 2015, 91, fiv071.	1.3	25
25	Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle. PLoS ONE, 2015, 10, e0136101.	1.1	25
26	darR and darS are regulatory genes that modulate 2-hexyl, 5-propyl resorcinol transcription in Pseudomonas chlororaphis PCL1606. Microbiology (United Kingdom), 2014, 160, 2670-2680.	0.7	7
27	Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA. BMC Microbiology, 2014, 14, 46.	1.3	24
28	The Mangotoxin Biosynthetic Operon (<i>mbo</i>) Is Specifically Distributed within Pseudomonas syringae Genomospecies 1 and Was Acquired Only Once during Evolution. Applied and Environmental Microbiology, 2013, 79, 756-767.	1.4	29
29	Recruitment and Rearrangement of Three Different Genetic Determinants into a Conjugative Plasmid Increase Copper Resistance in Pseudomonas syringae. Applied and Environmental Microbiology, 2013, 79, 1028-1033.	1.4	46
30	A <i>Pseudomonas syringae</i> Diversity Survey Reveals a Differentiated Phylotype of the Pathovar <i>syringae</i> Associated with the Mango Host and Mangotoxin Production. Phytopathology, 2013, 103, 1115-1129.	1.1	30
31	Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production. BMC Microbiology, 2012, 12, 10.	1.3	32
32	The mbo Operon Is Specific and Essential for Biosynthesis of Mangotoxin in Pseudomonas syringae. PLoS ONE, 2012, 7, e36709.	1.1	35