David J. Richardson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4355385/david-j-richardson-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

78 131 25,591 903 h-index g-index citations papers 1,269 32,205 7.03 3.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
903	Widely tunable actively mode-locked Bi-doped fiber laser operating in the O-band. <i>IEEE Photonics Technology Letters</i> , 2022 , 1-1	2.2	1
902	Hollow-core fiber delivery of broadband mid-infrared light for remote spectroscopy <i>Optics Express</i> , 2022 , 30, 7044-7052	3.3	2
901	Broadband Mode Scramblers for Few-Mode Fibers Based on 3D Printed Mechanically Induced Long-Period Fiber Gratings. <i>IEEE Photonics Technology Letters</i> , 2022 , 34, 169-172	2.2	
900	ML-Assisted Equalization for 50-Gb/s/ID-Band CWDM Transmission Over 100-km SMF. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2022 , 28, 1-10	3.8	3
899	Hollow-core fiber Fabry-Perot interferometers with reduced sensitivity to temperature <i>Optics Letters</i> , 2022 , 47, 2510-2513	3	O
898	Ultra-Long-Haul WDM Transmission in a Reduced Inter-Modal Interference NANF Hollow-Core Fiber 2021 ,		3
897	Hollow Core NANFs with Five Nested Tubes and Record Low Loss at 850, 1060, 1300 and 1625nm 2021 ,		3
896	The generation of femtosecond optical vortex beams with megawatt powers directly from a fiber based Mamyshev oscillator. <i>Nanophotonics</i> , 2021 ,	6.3	8
895	Recent Breakthroughs in Hollow Core Fiber Technology 2021 ,		2
894	. Journal of Lightwave Technology, 2021 , 39, 1458-1463	4	3
893	Optical Fiber Delay Lines in Microwave Photonics: Sensitivity to Temperature and Means to Reduce it. <i>Journal of Lightwave Technology</i> , 2021 , 39, 2311-2318	4	3
892	High-power, electronically controlled source of user-defined vortex and vector light beams based on a few-mode fiber amplifier. <i>Photonics Research</i> , 2021 , 9, 856	6	4
891	Polarization Effects on Thermally Stable Latency in Hollow-Core Photonic Bandgap Fibers. <i>Journal of Lightwave Technology</i> , 2021 , 39, 2142-2150	4	O
890	Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber. <i>Scientific Reports</i> , 2021 , 11, 8799	4.9	9
889	Real-world evidence: Patient views on asthma in respiratory specialist clinics in America. <i>Annals of Allergy, Asthma and Immunology</i> , 2021 , 126, 385-393.e2	3.2	3
888	Experimental characterization of an o-band bismuth-doped fiber amplifier. <i>Optics Express</i> , 2021 , 29, 15	345-15	 3 5 5
887	Numerical and experimental study on the impact of chromatic dispersion on O-band direct-detection transmission. <i>Applied Optics</i> , 2021 , 60, 4383-4390	1.7	3

(2021-2021)

886	4-Level Alternate-Mark-Inversion for Reach Extension in the O-Band Spectral Region. <i>Journal of Lightwave Technology</i> , 2021 , 39, 2847-2853	4	2
885	Generation of ~625nJ Pulses from a Mamyshev Oscillator with a few-mode LMA Yb-doped Fiber 2021 ,		1
884	Gas-induced differential refractive index enhanced guidance in hollow-core optical fibers. <i>Optica</i> , 2021 , 8, 916	8.6	4
883	Wideband and Low-Loss Mode Scrambler for Few-Mode Fibers Based on Distributed Multiple Point-Loads. <i>IEEE Photonics Journal</i> , 2021 , 13, 1-7	1.8	O
882	Impact of Pressure-Induced Differential Refractive Index in Raman Spectroscopy using Hollow-Core Fibres 2021 ,		1
881	Compact chirped-pulse amplification systems based on highly Tm-doped germanate fiber. <i>Optics Letters</i> , 2021 , 46, 3013-3016	3	1
880	A Longitudinal Study of Power Relations in a British Olympic Sport Organization. <i>Journal of Sport Management</i> , 2021 , 35, 312-324	2.1	1
879	In-line polarization controller for hollow core photonic bandgap fiber. <i>Optics Communications</i> , 2021 , 481, 126552	2	2
878	Performance-enhanced Amplified O-band WDM Transmission using Machine Learning based Equalization 2021 ,		1
877	Widely-tunable synchronisation-free picosecond laser source for multimodal CARS, SHG, and two-photon microscopy. <i>Biomedical Optics Express</i> , 2021 , 12, 1010-1019	3.5	1
876	Ultra-Broadband Bismuth-Doped Fiber Amplifier Covering a 115-nm Bandwidth in the O and E Bands. <i>Journal of Lightwave Technology</i> , 2021 , 39, 795-800	4	16
875	Transmission of 61 C-Band Channels Over Record Distance of Hollow-Core-Fiber With L-Band Interferers. <i>Journal of Lightwave Technology</i> , 2021 , 39, 813-820	4	10
874	Backscattering in antiresonant hollow-core fibers: over 40 dB lower than in standard optical fibers. <i>Optica</i> , 2021 , 8, 216	8.6	8
873	Finesse Limits in Hollow Core Fiber based Fabry-Perot interferometers. <i>Journal of Lightwave Technology</i> , 2021 , 39, 4489-4495	4	3
872	Low-Latency WDM Intensity-Modulation and Direct-Detection Transmission Over >100 km Distances in a Hollow Core Fiber. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2100102	8.3	1
871	High spatial-density, cladding-pumped 6-mode 7-core fiber amplifier for C-band operation. <i>Optics Express</i> , 2021 , 29, 30675-30681	3.3	3
870	Thinly coated hollow core fiber for improved thermal phase-stability performance. <i>Optics Letters</i> , 2021 , 46, 5177-5180	3	1
869	Hollow-Core NANF for High-Speed Short-Reach Transmission in the S+C+L-Bands. <i>Journal of</i>		

868	All-fiber saturable absorber based on nonlinear multimode interference with enhanced modulation depth. <i>Applied Optics</i> , 2021 , 60, 9007-9011	1.7	
867	High-power, high-efficiency, all-fiberized-laser-pumped, 260-nm, deep-UV laser for bacterial deactivation. <i>Optics Express</i> , 2021 , 29, 42485	3.3	3
866	Polarization Stable Hollow Core Fiber Interferometer With Faraday Rotator Mirrors. <i>IEEE Photonics Technology Letters</i> , 2021 , 33, 1503-1506	2.2	
865	Multimodal spectral focusing CARS and SFG microscopy with a tailored coherent continuum from a microstructured fiber. <i>Applied Physics B: Lasers and Optics</i> , 2020 , 126, 1	1.9	14
864	Low Thermal Sensitivity Hollow Core Fiber for Optically-Switched Data Centers. <i>Journal of Lightwave Technology</i> , 2020 , 38, 2703-2709	4	5
863	Phase Preserving Amplitude Saturation Through Tone Synthesis Assisted Saturated Four-Wave Mixing. <i>Journal of Lightwave Technology</i> , 2020 , 38, 1817-1826	4	O
862	. IEEE Photonics Technology Letters, 2020 , 32, 795-798	2.2	2
861	Long-Length and Thermally Stable High-Finesse Fabry-Perot Interferometers Made of Hollow Core Optical Fiber. <i>Journal of Lightwave Technology</i> , 2020 , 38, 2423-2427	4	8
860	Multi-Band Direct-Detection Transmission Over an Ultrawide Bandwidth Hollow-Core NANF. Journal of Lightwave Technology, 2020 , 38, 2849-2857	4	10
859	High Spatial Density 6-Mode 7-Core Fiber Amplifier for L-Band Operation. <i>Journal of Lightwave Technology</i> , 2020 , 38, 2938-2943	4	13
858	Recent breakthroughs in hollow core fiber technology 2020 ,		2
857	First Investigation on Double- and Single-sideband Formats in BDFA-enabled O-band Transmission 2020 ,		1
856	Experimental Characterization of Bismuth-Doped Fibre Amplifier: Electrical NF, PDG, and XGM 2020 ,		1
855	Compact micro-optic based components for hollow core fibers. <i>Optics Express</i> , 2020 , 28, 1518-1525	3.3	5
854	High-average-power picosecond mid-infrared OP-GaAs OPO. <i>Optics Express</i> , 2020 , 28, 5741-5748	3.3	10
853	Extruded tellurite antiresonant hollow core fiber for Mid-IR operation. <i>Optics Express</i> , 2020 , 28, 16542-7	16553	13
852	Adiabatic higher-order mode microfibers based on a logarithmic index profile. <i>Optics Express</i> , 2020 , 28, 19126-19132	3.3	6
851	High pulse energy fibre laser as an excitation source for photoacoustic tomography. <i>Optics Express</i> , 2020 , 28, 34255-34265	3.3	3

(2020-2020)

850	Controllable duration and repetition-rate picosecond pulses from a high-average-power OP-GaAs OPO. <i>Optics Express</i> , 2020 , 28, 32540-32548	3.3	5
849	Hollow Core NANF with 0.28 dB/km Attenuation in the C and L Bands 2020 ,		27
848	Ultra-low NA step-index large mode area Yb-doped fiber with a germanium doped cladding for high power pulse amplification. <i>Optics Letters</i> , 2020 , 45, 3828-3831	3	8
847	Anti-Resonant, Mid-Infrared Silica Hollow-Core Fiber 2020 ,		1
846	Hollow core fiber Fabry-Perot interferometers with finesse over 3000 2020 ,		2
845	Transmission of 61 C-band Channels with L-band Interferers over Record 618km of Hollow-Core-Fiber 2020 ,		1
844	Compact picosecond mid-IR PPLN OPO in burst-mode operation. <i>EPJ Web of Conferences</i> , 2020 , 243, 18004	0.3	
843	Compact picosecond mid-IR PPLN OPO with controllable peak powers. <i>OSA Continuum</i> , 2020 , 3, 2741	1.4	
842	Broadband Bismuth-Doped Fiber Amplifier With a Record 115-nm Bandwidth in the O and E Bands 2020 ,		1
841	Comparative Investigations between SSMF and Hollow-core NANF for Transmission in the S+C+L-bands 2020 ,		2
840	Generation and Coherent Detection of 2-µm-band WDM-QPSK Signals by On-chip Spectral Translation 2020 ,		1
839	Pressure in As-drawn Hollow Core Fibers 2020 ,		1
838	Multicore and multimode optical amplifiers for space division multiplexing 2020, 301-333		5
837	Interband Short Reach Data Transmission in Ultrawide Bandwidth Hollow Core Fiber. <i>Journal of Lightwave Technology</i> , 2020 , 38, 159-165	4	21
836	Experimental Demonstration of Dual O+C-Band WDM Transmission Over 50-km SSMF With Direct Detection. <i>Journal of Lightwave Technology</i> , 2020 , 38, 2278-2284	4	10
835	The Thermal Phase Sensitivity of Both Coated and Uncoated Standard and Hollow Core Fibers Down to Cryogenic Temperatures. <i>Journal of Lightwave Technology</i> , 2020 , 38, 2477-2484	4	5
834	Tunable CW Bi-Doped Fiber Laser System From 1320 to 1370 nm Using a Fiber Bragg Grating. <i>IEEE Photonics Technology Letters</i> , 2020 , 32, 1443-1446	2.2	0
833	Reconfigurable structured light generation in a multicore fibre amplifier. <i>Nature Communications</i> , 2020 , 11, 3986	17.4	22

832	Spectral Difference Interferometry for the Characterization of Optical Media. <i>Laser and Photonics Reviews</i> , 2019 , 13, 1900007	8.3	1
831	Cryptography in coherent optical information networks using dissipative metamaterial gates. <i>APL Photonics</i> , 2019 , 4, 046102	5.2	6
830	Intermodal Bragg-Scattering Four Wave Mixing in Silicon Waveguides. <i>Journal of Lightwave Technology</i> , 2019 , 37, 1680-1685	4	5
829	Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection. <i>IEEE Photonics Technology Letters</i> , 2019 , 31, 723-726	2.2	10
828	WDM Transmission With In-Line Amplification at 1.3th Using a Bi-Doped Fiber Amplifier. <i>Journal of Lightwave Technology</i> , 2019 , 37, 1826-1830	4	19
827	All-Fiber Passive Alignment-Free Depolarizers Capable of Depolarizing Narrow Linewidth Signals. <i>Journal of Lightwave Technology</i> , 2019 , 37, 704-714	4	1
826	Fibre-optic based particle sensing via deep learning. <i>JPhys Photonics</i> , 2019 , 1, 044004	2.5	8
825	Toward High Accuracy Positioning in 5G via Passive Synchronization of Base Stations Using Thermally-Insensitive Optical Fibers. <i>IEEE Access</i> , 2019 , 7, 113197-113205	3.5	3
824	Long Length Fibre Fabry-Perot Interferometers and their Applications in Fibre Characterization and Temperature Sensing 2019 ,		2
823	2019,		1
823 822	2019, Highly-efficient and low return-loss coupling of standard and antiresonant hollow-core fibers 2019,		1
		3.3	
822	Highly-efficient and low return-loss coupling of standard and antiresonant hollow-core fibers 2019 , Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process	3.3	1
822	Highly-efficient and low return-loss coupling of standard and antiresonant hollow-core fibers 2019 , Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization. <i>Optics Express</i> , 2019 , 27, 20567-20582		1 22
822 821 820	Highly-efficient and low return-loss coupling of standard and antiresonant hollow-core fibers 2019, Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization. <i>Optics Express</i> , 2019, 27, 20567-20582 Selective wavelength conversion in a few-mode fiber. <i>Optics Express</i> , 2019, 27, 24072-24081 Ultra-short wavelength operation of thulium-doped fiber amplifiers and lasers. <i>Optics Express</i> , 2019	3.3	1 22 4
822 821 820 819	Highly-efficient and low return-loss coupling of standard and antiresonant hollow-core fibers 2019, Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization. <i>Optics Express</i> , 2019, 27, 20567-20582 Selective wavelength conversion in a few-mode fiber. <i>Optics Express</i> , 2019, 27, 24072-24081 Ultra-short wavelength operation of thulium-doped fiber amplifiers and lasers. <i>Optics Express</i> , 2019, 27, 36699-36707 Compact, high repetition rate, 4.2 MW peak power, 1925 nm, thulium-doped fiber chirped-pulse	3.3	1 22 4
822 821 820 819	Highly-efficient and low return-loss coupling of standard and antiresonant hollow-core fibers 2019, Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization. <i>Optics Express</i> , 2019, 27, 20567-20582 Selective wavelength conversion in a few-mode fiber. <i>Optics Express</i> , 2019, 27, 24072-24081 Ultra-short wavelength operation of thulium-doped fiber amplifiers and lasers. <i>Optics Express</i> , 2019, 27, 36699-36707 Compact, high repetition rate, 4.2 MW peak power, 1925 nm, thulium-doped fiber chirped-pulse amplification system with dissipative soliton seed laser. <i>Optics Express</i> , 2019, 27, 36741-36749	3.3	1 22 4

814	Channel Selective Wavelength Conversion by Means of Inter Modal Four Wave Mixing 2019,		3
813	40 dB gain all fiber bismuth-doped amplifier operating in the O-band. <i>Optics Letters</i> , 2019 , 44, 2248-22	53	19
812	High-beam-quality, watt-level, widely tunable, mid-infrared OP-GaAs optical parametric oscillator. <i>Optics Letters</i> , 2019 , 44, 2744	3	5
811	Temperature insensitive fiber interferometry. <i>Optics Letters</i> , 2019 , 44, 2768	3	9
810	Study on the temperature dependent characteristics of O-band bismuth-doped fiber amplifier. <i>Optics Letters</i> , 2019 , 44, 5650-5653	3	5
809	Highly efficient ITm3+ doped germanate large mode area single mode fiber laser. <i>Optical Materials Express</i> , 2019 , 9, 4115	2.6	9
808	PAM4 transmission over 360 km of fibre using optical phase conjugation. <i>OSA Continuum</i> , 2019 , 2, 973	1.4	5
807	Intermodal frequency generation in silicon-rich silicon nitride waveguides. <i>Photonics Research</i> , 2019 , 7, 615	6	7
806	The thermal sensitivity of optical path length in standard single mode fibers down to cryogenic temperatures 2019 ,		1
805	High Spatial Density 6-Mode 7-Core Multicore L-Band Fiber Amplifier 2019,		1
804	Optical Amplifiers for Mode Division Multiplexing 2019 , 849-873		
803	AMI for Nonlinearity Mitigation in O-Band Transmission 2019,		1
802	Demonstration of opposing thermal sensitivities in hollow-core fibers with open and sealed ends. <i>Optics Letters</i> , 2019 , 44, 4367-4370	3	6
801	Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering. <i>APL Photonics</i> , 2019 , 4, 022902	5.2	14
800	Nonlinear control of coherent absorption and its optical signal processing applications. APL		1
	Photonics, 2019 , 4, 106109	5.2	
799		5.2	8
799 798	Photonics, 2019 , 4, 106109 Fully integrated optical isolators for space division multiplexed (SDM) transmission. <i>APL Photonics</i> ,		8

796	Widely Tunable, Narrow-Linewidth, High-Peak-Power, Picosecond Midinfrared Optical Parametric Amplifier. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2018 , 24, 1-6	3.8	5
795	Demonstration of Single-Mode Multicore Fiber Transport Network With Crosstalk-Aware In-Service Optical Path Control. <i>Journal of Lightwave Technology</i> , 2018 , 36, 1451-1457	4	8
794	Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. <i>Nature Communications</i> , 2018 , 9, 182	17.4	48
793	Highly efficient frequency doubling and quadrupling of a short-pulsed thulium fiber laser. <i>Applied Physics B: Lasers and Optics</i> , 2018 , 124, 59	1.9	3
792	15 \$times\$ 200 Gbit/s 16-QAM SDM Transmission Over an Integrated 7-Core Cladding-Pumped Repeatered Multicore Link in a Recirculating Loop. <i>Journal of Lightwave Technology</i> , 2018 , 36, 349-354	4	6
791	295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 h. <i>Optics Express</i> , 2018 , 26, 6490-6498	3.3	20
790	Frequency comb generation in a silicon ring resonator modulator. <i>Optics Express</i> , 2018 , 26, 790-796	3.3	35
789	Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber. <i>Optics Express</i> , 2018 , 26, 2039-2044	3.3	18
788	Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers. <i>Optics Express</i> , 2018 , 26, 8866-8882	3.3	10
787	Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber. <i>Applied Physics Letters</i> , 2018 , 113, 051103	3.4	10
786	All-optical Wavelength Conversion of Phase-encoded Signals in Silicon-rich Silicon Nitride Waveguides 2018 ,		1
785	Optical Injection-Locked Directly Modulated Lasers for Dispersion Pre-Compensated Direct-Detection Transmission. <i>Journal of Lightwave Technology</i> , 2018 , 36, 4967-4974	4	6
784	Ultrafast laser-scanning optical resolution photoacoustic microscopy at up to 2 million A-lines per second. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1	3.5	14
783	Ultra-short wavelength operation of a thulium doped fiber laser in the 1620-1660nm wavelength band 2018 ,		2
782	Enabling component technologies for space division multiplexing 2018,		2
781	Optical Phase Conjugation in Installed Optical Networks 2018,		3
78o	106 W, picosecond Yb-doped fiber MOPA system with a radially polarized output beam. <i>Optics Letters</i> , 2018 , 43, 4957-4960	3	24
779	Virtual Draw of Tubular Hollow-Core Fibers 2018 ,		2

778	Pulse energy packing effects on material transport during laser processing of () silicon. <i>Applied Physics A: Materials Science and Processing</i> , 2018 , 124, 1	2.6	О
777	Hollow-core fibres for temperature-insensitive fibre optics and its demonstration in an Optoelectronic oscillator. <i>Scientific Reports</i> , 2018 , 8, 18015	4.9	7
776	Fully integrated SDM amplifiers 2018 ,		1
775	Broadband Study of Inter-Modal Bragg Scattering Four Wave Mixing in Multi-Mode Fibres 2018,		2
774	Laser frequency stabilization and spectroscopy at 2051 nm using a compact CO-filled Kagome hollow core fiber gas-cell system. <i>Optics Express</i> , 2018 , 26, 28621-28633	3.3	5
773	Photonic lantern broadband orbital angular momentum mode multiplexer. <i>Optics Express</i> , 2018 , 26, 300	042-30	0056
77²	Record Low-Loss 1.3dB/km Data Transmitting Antiresonant Hollow Core Fibre 2018 ,		16
771	Amplified O-Band WDM Transmission Using a Bi-Doped Fibre Amplifier 2018 ,		7
77°	Multi-wavelength fiber laser using a single multicore erbium doped fiber 2018,		2
769	Optical Amplifiers for Mode Division Multiplexing 2018 , 1-25		О
768	Polarization-Insensitive Four-Wave-Mixing-Based Wavelength Conversion in Few-Mode Optical Fibers. <i>Journal of Lightwave Technology</i> , 2018 , 36, 3678-3683	4	11
767	A Tuneable Multi-Core to Single Mode Fiber Coupler. <i>IEEE Photonics Technology Letters</i> , 2017 , 29, 591-5	9 <u>4</u> 2	6
766	. Journal of Lightwave Technology, 2017 , 35, 1363-1368	4	48
765	Optical Orbital Angular Momentum Amplifier Based on an Air-Hole Erbium-Doped Fiber. <i>Journal of Lightwave Technology</i> , 2017 , 35, 430-436	4	35
764	Optical Predistortion Enabling Phase Preservation in Optical Signal Processing Demonstrated in FWM-Based Amplitude Limiter. <i>Journal of Lightwave Technology</i> , 2017 , 35, 963-970	4	5
763	Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 T, 350 fs pulses based on bendable photonic crystal fiber. <i>Applied Physics B: Lasers and Optics</i> , 2017 , 123, 43	1.9	13
762	Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagom[fiber 2017,		2
761	Long-Haul Dense Space-Division Multiplexed Transmission Over Low-Crosstalk Heterogeneous 32-Core Transmission Line Using a Partial Recirculating Loop System. <i>Journal of Lightwave Technology</i> , 2017 , 35, 488-498	4	37

760	Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications. <i>Journal of Lightwave Technology</i> , 2017 , 35, 437-442	4	58
759	Elliptical Core Few Mode Fibers for Multiple-Input Multiple Output-Free Space Division Multiplexing Transmission. <i>IEEE Photonics Technology Letters</i> , 2017 , 29, 1764-1767	2.2	22
758	Thulium-fiber-laser-pumped, high-peak-power, picosecond, mid-infrared orientation-patterned GaAs optical parametric generator and amplifier. <i>Optics Letters</i> , 2017 , 42, 4036-4039	3	11
757	C- to L- band Wavelength Conversion Enabled by Parametric Processes in a Few Mode Fiber 2017 ,		4
756	Novel hollow core fibers for ultra-high power delivery 2017 ,		2
755	Cavity-induced phase noise suppression in a Fabry-Perot modulator-based optical frequency comb. <i>Optics Letters</i> , 2017 , 42, 1536-1539	3	5
754	Ten gigabit per second optical transmissions at 1.98 μm in centimetre-long SiGe waveguides. Electronics Letters, 2017 , 53, 1213-1214	1.1	5
753	High-efficiency grating-couplers: demonstration of a new design strategy. <i>Scientific Reports</i> , 2017 , 7, 16670	4.9	75
752	Anisotropic Superattenuation of Capillary Waves on Driven Glass Interfaces. <i>Physical Review Letters</i> , 2017 , 119, 235501	7.4	5
751	Si-rich Silicon Nitride for Nonlinear Signal Processing Applications. <i>Scientific Reports</i> , 2017 , 7, 22	4.9	75
75 ⁰	Mitigation of Nonlinear Effects on WDM QAM Signals Enabled by Optical Phase Conjugation With Efficient Bandwidth Utilization. <i>Journal of Lightwave Technology</i> , 2017 , 35, 971-978	4	33
749	Spontaneous Raman scattering in hollow core photonic crystal fibres 2017 ,		1
748	10🛮 0 MDM Transmission over 24 km of Ring-Core Fibre using Mode Selective Photonic Lanterns and Sparse Equalization 2017 ,		2
747	Crosstalk Analysis of 32-Core Dense Space Division Multiplexed System for Higher Order Modulation Formats Using an Integrated Cladding-Pumped Amplifier 2017 ,		1
746	Novel Fiber Design for Wideband Conversion and Amplification in Multimode Fibers 2017,		4
745	Multicore Fibre Fan-In/Fan-Out Device using Fibre Optic Collimators 2017 ,		4
744	2017,		3
743	Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator 2017 ,		1

742	2017,		3
741	2017,		3
740	Power Consumption in Multi-core Fibre Networks 2017 ,		3
739	Intermodal Four-Wave Mixing and Parametric Amplification in Kilometer-Long Multimode Fibers. Journal of Lightwave Technology, 2017 , 35, 5296-5305	4	18
738	100-Gb/s Transmission Over a 2520-km Integrated MCF System Using Cladding-Pumped Amplifiers. <i>IEEE Photonics Technology Letters</i> , 2017 , 29, 1187-1190	2.2	6
737	Full quadrature regeneration of QPSK signals using sequential phase sensitive amplification and parametric saturation. <i>Optics Express</i> , 2017 , 25, 696-705	3.3	16
736	Wavelength conversion of complex modulation formats in a compact SiGe waveguide. <i>Optics Express</i> , 2017 , 25, 3252-3258	3.3	9
735	32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system. <i>Optics Express</i> , 2017 , 25, 32887	3.3	31
734	All-optical mode and wavelength converter based on parametric processes in a three-mode fiber. <i>Optics Express</i> , 2017 , 25, 33602	3.3	22
733	Radially and azimuthally polarized nanosecond Yb-doped fiber MOPA system incorporating temporal shaping. <i>Optics Letters</i> , 2017 , 42, 1740-1743	3	5
732	Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR. <i>Optics Letters</i> , 2017 , 42, 2571-2574	3	27
731	How to make the propagation time through an optical fiber fully insensitive to temperature variations. <i>Optica</i> , 2017 , 4, 659	8.6	25
730	Raman-shifted wavelength-selectable pulsed fiber laser with high repetition rate and high pulse energy in the visible. <i>Optics Express</i> , 2017 , 25, 351-356	3.3	11
729	All-optical mode-group multiplexed transmission over a graded-index ring-core fiber with single radial mode. <i>Optics Express</i> , 2017 , 25, 13773-13781	3.3	17
728	Demonstration of arbitrary temporal shaping of picosecond pulses in a radially polarized Yb-fiber MOPA with > 10 W average power. <i>Optics Express</i> , 2017 , 25, 15402-15413	3.3	3
727	49.6 Gb/s direct detection DMT transmission over 40 km single mode fibre using an electrically packaged silicon photonic modulator. <i>Optics Express</i> , 2017 , 25, 29798-29811	3.3	3
726	In-service Crosstalk Monitoring for Dense Space Division Multiplexed Multi-core Fiber Transmission Systems 2017 ,		2
725	300-km Transmission of Dispersion Pre-compensated PAM4 Using Direct Modulation and Direct Detection 2017 ,		5

724	Optical nonlinearity mitigation of 6 \square 0 GBd polarization-division multiplexing 16 QAM signals in a field-installed transmission link 2017 ,		3
723	Flexible Scheme for Measuring Chromatic Dispersion Based on Interference of Frequency Tones 2017 ,		1
722	Optical Injection Locking for Carrier Phase Recovery and Regeneration 2017,		2
721	1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band Dense SDM Transmission over 205.6-km of Single-mode Heterogeneous Multi-core Fiber using 96-Gbaud PDM-16QAM Channels 2017 ,		49
720	Beam-Steering All-Optical Switch for Multi-Core Fibers 2017 ,		13
719	Hollow Core Fibres and their Applications 2017,		6
718	Annular Core Photonic Lantern OAM Mode Multiplexer 2017,		5
717	All-fiber optical interconnection for dissimilar multicore fibers with low insertion loss 2017,		2
716	Optoelectronic oscillator incorporating hollow-core photonic bandgap fiber. <i>Optics Letters</i> , 2017 , 42, 2647-2650	3	8
715	Independent core attenuation control in multicore fibers by direct femtosecond laser inscription 2017 ,		1
714	MIMO-less Space Division Multiplexing Transmission over 1 km Elliptical Core Few Mode Fiber 2017 ,		4
713	High peak power picosecond pulses from an all-fiber master oscillator power amplifier seeded by a 1.95 h gain-switched diode 2017 ,		1
712	Record High Capacity (6.8 Tbit/s) WDM Coherent Transmission in Hollow-Core Antiresonant Fiber 2017 ,		2
711	Optimisation of amplitude limiters for phase preservation based on the exact solution to degenerate four-wave mixing. <i>Optics Express</i> , 2016 , 24, 2774-87	3.3	9
710	Dual hollow-core anti-resonant fibres 2016 ,		3
709	Mode Coupling Effects in Ring-Core Fibers for Space-Division Multiplexing Systems. <i>Journal of Lightwave Technology</i> , 2016 , 34, 3365-3372	4	30
708	Silicon photonic Mach Zehnder modulators for next-generation short-reach optical communication networks 2016 ,		1
707	Ultra-Compact Amorphous Silicon Waveguide for Wavelength Conversion. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 410-413	2.2	12

706	Real-Time Modal Analysis via Wavelength-Swept Spatial and Spectral (\${S}^{2})\$ Imaging. <i>IEEE Photonics Technology Letters</i> , 2016 , 1-1	2.2	
705	Novel fibre lasers as excitation sources for photoacoustic tomography and microscopy 2016 ,		2
704	All-Optical Programmable Disaggregated Data Centre Network Realized by FPGA-Based Switch and Interface Card. <i>Journal of Lightwave Technology</i> , 2016 , 34, 1925-1932	4	22
703	Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission. <i>Journal of Lightwave Technology</i> , 2016 , 34, 104-113	4	48
702	Polarization Insensitive Wavelength Conversion in a Low-Birefringence SiGe Waveguide. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 1221-1224	2.2	7
701	Multi-Channel Phase Regenerator Based on Polarization-Assisted Phase-Sensitive Amplification. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 845-848	2.2	10
700	40 Gb/s WDM Transmission Over 1.15-km HC-PBGF Using an InP-Based Mach-Zehnder Modulator at 2 lb. <i>Journal of Lightwave Technology</i> , 2016 , 34, 1706-1711	4	18
699	New optical fibres for high-capacity optical communications. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	35
698	Current status of few mode fiber amplifiers for spatial division multiplexed transmission. <i>Journal of Optics (India)</i> , 2016 , 45, 275-284	1.3	6
697	Detailed phase matching characterization of inter-modal four-wave mixing in a two-mode fiber 2016 ,		2
696	Single Polarization, High Energy Pulsed Fiber Laser from 200 fb Core Yb-Doped Fiber 2016 ,		1
695	S2 Measurement of Higher Order Mode Content in Low Loss Hypocycloid Kagom[Hollow Core Photonic Crystal Fiber 2016 ,		1
694	Silica-Based Thulium Doped Fiber Amplifiers for Wavelengths beyond the L-band 2016 ,		5
693	Antiresonant Hollow Core Fiber with Octave Spanning Bandwidth for Short Haul Data Communications 2016 ,		8
692	32-core Dense SDM Unidirectional Transmission of PDM-16QAM Signals Over 1600 km Using Crosstalk-managed Single-mode Heterogeneous Multicore Transmission Line 2016 ,		35
691	Compact few-mode fiber collimator and associated optical components for mode division multiplexed transmission 2016 ,		6
690	All-optical Mode-Group Division Multiplexing Over a Graded-Index Ring-Core Fiber with Single Radial Mode 2016 ,		15
689	Nonlinear optical properties of ytterbium-doped tantalum pentoxide rib waveguides on silicon at telecom wavelengths 2016 ,		1

688	Nondestructive measurement of the roughness of the inner surface of hollow core-photonic bandgap fibers. <i>Optics Letters</i> , 2016 , 41, 5086-5089	3	5
687	InP-based Optical Comb-locked Tunable Transmitter 2016 ,		7
686	Nonlinearity Mitigation for Multi-channel 64-QAM Signals in a Deployed Fiber Link through Optical Phase Conjugation 2016 ,		2
685	Optical Orbital Angular Momentum Amplifier based on an Air-Core Erbium Doped Fiber 2016 ,		2
684	Broadband Silica-Based Thulium Doped Fiber Amplifier Employing Dual-Wavelength Pumping 2016 ,		1
683	Simplified Impulse Response Characterization for Mode Division Multiplexed Systems 2016 ,		5
682	Modal content in hypocycloid Kagom[hollow core photonic crystal fibers. Optics Express, 2016, 24, 1579	0838312	13
681	Broadband high birefringence and polarizing hollow core antiresonant fibers. <i>Optics Express</i> , 2016 , 24, 22943-22958	3.3	45
680	Broadband silica-based thulium doped fiber amplifier employing multi-wavelength pumping. <i>Optics Express</i> , 2016 , 24, 23001-23008	3.3	10
679	Inter-modal four-wave mixing study in a two-mode fiber. <i>Optics Express</i> , 2016 , 24, 30338-30349	3.3	46
678	Detailed study of macrobending effects in a wide transmission bandwidth hollow-core photonic bandgap fiber 2016 ,		2
677	Cavity effect on phase noise of Fabry-Perot modulator-based optical frequency comb 2016 ,		1
676	Optoelectronic oscillator with low temperature induced frequency drift 2016,		1
675	. Journal of Lightwave Technology, 2016 , 34, 3223-3229	4	6
674	Wavelength conversion technique for optical frequency dissemination applications. <i>Optics Letters</i> , 2016 , 41, 1716-9	3	3
673	Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers. <i>Optics Letters</i> , 2016 , 41, 2197-200	3	34
672	Roadmap of optical communications. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 063002	1.7	264
671	All-optical Phase Regeneration with Record PSA Extinction Ratio in a Low-birefringence Silicon Germanium Waveguide. <i>Journal of Lightwave Technology</i> , 2016 , 34, 3993-3998	4	13

670	High gain holmium-doped fibre amplifiers. <i>Optics Express</i> , 2016 , 24, 13946-56	3.3	29
669	2015 , 53, 44-51		30
668	Characterization of Mode Coupling in Few-Mode FBG With Selective Mode Excitation. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 1713-1716	2.2	35
667	Demonstration of Space-to-Wavelength Conversion in SDM Networks. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 828-831	2.2	4
666	Extreme Short Wavelength Operation (1.65 🛭 .7 μ́m) of Silica-Based Thulium-Doped Fiber Amplifier 2015 ,		7
665	Accurate calibration of S(2) and interferometry based multimode fiber characterization techniques. <i>Optics Express</i> , 2015 , 23, 10540-52	3.3	8
664	MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers. <i>Optics Express</i> , 2015 , 23, 312-29	3.3	26
663	Anti-resonant hexagram hollow core fibers. <i>Optics Express</i> , 2015 , 23, 1289-99	3.3	30
662	100 Gbit/s WDM transmission at 2 μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber. <i>Optics Express</i> , 2015 , 23, 4946-51	3.3	74
661	Optical injection locking-based amplification in phase-coherent transfer of optical frequencies. <i>Optics Letters</i> , 2015 , 40, 4198-201	3	17
660	Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers. <i>Optics Letters</i> , 2015 , 40, 2237-40	3	40
659	Dense WDM transmission at 2 th enabled by an arrayed waveguide grating. <i>Optics Letters</i> , 2015 , 40, 3308-11	3	29
658	Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity. <i>Optics Letters</i> , 2015 , 40, 3288-91	3	20
657	High-energy, near- and mid-IR picosecond pulses generated by a fiber-MOPA-pumped optical parametric generator and amplifier. <i>Optics Express</i> , 2015 , 23, 12613-8	3.3	19
656	Accurate modelling of fabricated hollow-core photonic bandgap fibers. <i>Optics Express</i> , 2015 , 23, 23117	-3 323	15
655	Experimental Demonstration of Improved Equalization Algorithm for IM/DD Fast OFDM. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 1780-1783	2.2	8
654	Record Phase Sensitive Extinction Ratio in a Silicon Germanium Waveguide 2015,		4
653	Amplification of 12 OAM States in an Air-Core EDF 2015 ,		2

652	Practical Considerations on Discrete Multi-tone Transmission for Cost-effective Access Networks 2015 ,		4
651	Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide. <i>Optics Letters</i> , 2015 , 40, 4118-21	3	34
650	Heterogeneous Space-Division Multiplexing and Joint Wavelength Switching Demonstration 2015,		25
649	Recent Progress in the Development of Few Mode Fiber Amplifiers 2015,		2
648	Compact Optical Comb Generator Using InP Tunable Laser and Push-Pull Modulator. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 217-220	2.2	21
647	Phase regeneration of an M-PSK signal using partial regeneration of its M/2-PSK second phase harmonic. <i>Optics Communications</i> , 2015 , 334, 35-40	2	4
646	Amplification of 12 OAM Modes in an air-core erbium doped fiber. <i>Optics Express</i> , 2015 , 23, 28341-8	3.3	41
645	Photonic bandgap fibres for low-latency data transmission 2015 ,		1
644	EVROS: All-optical programmable disaggregated data centre interconnect utilizing hollow-core bandgap fibre 2015 ,		8
643	Phase and amplitude regeneration through sequential PSA and FWM saturation in HNLF 2015 ,		2
642	Optical side scattering radiometry for high resolution, wide dynamic range longitudinal assessment of optical fibers. <i>Optics Express</i> , 2015 , 23, 27960-74	3.3	7
641	Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres. <i>Scientific Reports</i> , 2015 , 5, 15447	4.9	41
640	Demonstration of an 11km Hollow Core Photonic Bandgap Fiber for Broadband Low-latency Data Transmission 2015 ,		7
639	All-Fiber Spatial Mode Selective Filter for Compensating Mode Dependent Loss in MDM Transmission Systems 2015 ,		2
638	Demonstration of a 9 LP-Mode Transmission Fiber with Low DMD and Loss 2015 ,		7
637	Volume Manufacturing of Hollow Core Photonic Band Gap Fibers: Challenges and Opportunities 2015 ,		3
636	FWM-based, Idler-free Phase Quantiser with Flexible Operating Power 2015,		4
635	Studying the limits of production rate and yield for the volume manufacturing of hollow core photonic band gap fibers. <i>Optics Express</i> , 2015 , 23, 32179-90	3.3	4

634	Holmium-Doped Fiber Amplifier for Optical Communications at 2.05 🗹 .13 μ́m 2015 ,		11
633	Compact higher-order mode converter based on all-fiber phase plate segment 2015,		1
632	Parametric modeling using sensitivity-based adjoint neuro-transfer functions for microwave passive components 2015 ,		6
631	Data transmission through up to 74.8 km of hollow-core fiber with coherent and direct-detect transceivers 2015 ,		5
630	PSA-based phase regeneration of DPSK signals in a silicon germanium waveguide 2015 ,		1
629	A DSP-assisted symbol-cascade mobile fronthaul solution with large capacity and neat RRHs 2015 ,		3
628	PSA-based all-optical multi-channel phase regenerator 2015 ,		4
627	Nonlinearity mitigation through optical phase conjugation in a deployed fibre link with full bandwidth utilization 2015 ,		6
626	72-Tb/s transmission over 179-km all-fiber 6-mode span with two cladding pumped in-line amplifiers 2015 ,		10
625	On the role of signal-pump ratio in FWM-based phase preserving amplitude regeneration 2015 ,		2
624	Polarization-Assisted Phase-Sensitive Processor. <i>Journal of Lightwave Technology</i> , 2015 , 33, 1166-1174	4	25
623	Experimental Characterization of a Graded-Index Ring-Core Fiber Supporting 7 LP Mode Groups 2015 ,		10
622	High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres 2015 ,		1
621	Homodyne OFDM with Optical Injection Locking for Carrier Recovery. <i>Journal of Lightwave Technology</i> , 2015 , 33, 34-41	4	32
620	High-Capacity Directly Modulated Optical Transmitter for 2-th Spectral Region. <i>Journal of Lightwave Technology</i> , 2015 , 33, 1373-1379	4	44
619	Archon: A Function Programmable Optical Interconnect Architecture for Transparent Intra and Inter Data Center SDM/TDM/WDM Networking. <i>Journal of Lightwave Technology</i> , 2015 , 33, 1586-1595	4	48
618	Optical Fourier synthesis of high-repetition-rate pulses. <i>Optica</i> , 2015 , 2, 18	8.6	18
617	41.6 Tbit/s C-Band SDM OFDM Transmission Through 12 Spatial and Polarization Modes Over 74.17 km Few Mode Fiber. <i>Journal of Lightwave Technology</i> , 2015 , 33, 1440-1444	4	21

616	52.6 Gbit/s Single-Channel Directly-Modulated Optical Transmitter for 2-fin Spectral Region 2015 ,		2
615	Mitigating Spectral Leakage and Sampling Errors in Spatial and Spectral (S2) Imaging 2015 ,		2
614	Optical Regeneration. Springer Series in Optical Sciences, 2015, 129-155	0.5	1
613	Impact of structural distortions on the performance of hollow-core photonic bandgap fibers. <i>Optics Express</i> , 2014 , 22, 2735-44	3.3	18
612	High Capacity Mode-Division Multiplexed Optical Transmission in a Novel 37-cell Hollow-Core Photonic Bandgap Fiber. <i>Journal of Lightwave Technology</i> , 2014 , 32, 854-863	4	55
611	. IEEE Photonics Technology Letters, 2014 , 26, 1100-1103	2.2	48
610	First Demonstration of a 2- \$mu{rm m}\$ OTDR and Its Use in Photonic Bandgap \${rm CO}_{2}\$ Sensing Fiber. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 889-892	2.2	3
609	High Power Diode-Seeded Fiber Amplifiers at 2 h Erom Architectures to Applications. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 525-536	3.8	31
608	Control of Material Transport Through Pulse Shape Manipulation Development Toward Designer Pulses. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 51-63	3.8	14
607	Multi-element fiber technology for space-division multiplexing applications. <i>Optics Express</i> , 2014 , 22, 3787-96	3.3	32
606	Optical chopper-based re-circulating loop for few-mode fiber transmission. <i>Optics Letters</i> , 2014 , 39, 11	813-4	9
605	20 🗹 60-Gb/s Space-division-multiplexed 32QAM transmission over 60 km few-mode fiber. <i>Optics Express</i> , 2014 , 22, 749-55	3.3	39
604	100-GHz Grid-Aligned Multi-Channel Polarization Insensitive Black-Box Wavelength Converter. Journal of Lightwave Technology, 2014 , 32, 3027-3035	4	8
603	Signal Regeneration Techniques for Advanced Modulation Formats 2014 ,		2
602	Novel fluid dynamics model to predict draw of hollow core photonic band-gap fibres 2014,		1
601	First demonstration of all-optical programmable SDM/TDM intra data centre and WDM inter-DCN communication 2014 ,		7
600	90 nm gain extension towards 1.7 h for diode-pumped silica-based thulium-doped fiber amplifiers 2014 ,		6
599	Yb-fiber amplifier pumped idler-resonant PPLN optical parametric oscillator producing 90 femtosecond pulses with high beam quality. <i>Applied Physics B: Lasers and Optics</i> , 2014 , 117, 987-993	1.9	10

598	81 Gb/s WDM transmission at 2th over 1.15 km of low-loss hollow core photonic bandgap fiber 2014 ,		8
597	Optical Phase Quantizer Based on Phase Sensitive Four Wave Mixing at Low Nonlinear Phase Shifts. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 2146-2149	2.2	18
596	Modulator-free quadrature amplitude modulation signal synthesis. <i>Nature Communications</i> , 2014 , 5, 5911	17.4	24
595	Mode division multiplexing over 19-cell hollow-core photonic bandgap fibre by employing integrated mode multiplexer. <i>Electronics Letters</i> , 2014 , 50, 1227-1229	1.1	1
594	Quadrature decomposition of optical fields using two orthogonal phase sensitive amplifiers 2014,		3
593	41.6 Tb/s C-band SDM OFDM transmission through 12 spatial and polarization modes over 74.17 km few mode fiber 2014 ,		7
592	Efficient binary phase quantizer based on phase sensitive four wave mixing 2014,		5
591	Towards real-time mode content characterization of multimode fibers 2014 ,		1
590	Up to 64QAM (30 Gbit/s) directly-modulated and directly-detected OFDM at 2 th wavelength 2014 ,		1
589	High sensitivity gas detection using Hollow Core Photonic Bandgap Fibres designed for mid-IR operation 2014 ,		1
588	Spatial mode switchable, wavelength tunable erbium doped fiber laser incorporating a spatial light modulator 2014 ,		5
587	Hollow Core Photonic Bandgap Fibers for Mid-IR Applications 2014,		1
586	Understanding Wavelength Scaling in 19-Cell Core Hollow-Core Photonic Bandgap Fibers 2014,		8
585	Demonstration of real-time ethernet to reconfigurable superchannel data transport over elastic optical network 2014 ,		1
584	High-energy diode-seeded nanosecond 2 In fiber MOPA systems incorporating active pulse shaping. <i>Optics Letters</i> , 2014 , 39, 1569-72	3	14
583	Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber. <i>Optics Letters</i> , 2014 , 39, 295-8	3	43
582	Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups. <i>Optics Express</i> , 2014 , 22, 21499-507	3.3	30
581	Fast and broadband fiber dispersion measurement with dense wavelength sampling. <i>Optics Express</i> , 2014 , 22, 943-53	3.3	11

580	Leakage channel fibers with microstuctured cladding elements: a unique LMA platform. <i>Optics Express</i> , 2014 , 22, 8574-84	3.3	13
579	First demonstration of a 2th few-mode TDFA for mode division multiplexing. <i>Optics Express</i> , 2014 , 22, 10544-9	3.3	6
578	X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms. <i>Optics Express</i> , 2014 , 22, 26181-92	3.3	18
577	Few-mode multi-element fiber amplifier for mode division multiplexing. <i>Optics Express</i> , 2014 , 22, 29031	-6 .3	9
576	Picometer-scale surface roughness measurements inside hollow glass fibres. <i>Optics Express</i> , 2014 , 22, 29554-67	3.3	6
575	Cladding pumped few-mode EDFA for mode division multiplexed transmission. <i>Optics Express</i> , 2014 , 22, 29008-13	3.3	63
574	Suppression of Gain Variation in a PSA-Based Phase Regenerator Using an Additional Harmonic. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 2074-2077	2.2	6
573	Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier. <i>Optics Express</i> , 2014 , 22, 21938-43	3.3	19
572	1 Km hole-assisted few-mode multi-core fiber 32QAM WDM transmission 2014 ,		6
571	Few-Mode TDFA for Mode Division Multiplexing at 2µm 2014 ,		2
570	Generation of mode-locked optical pulses at 1035 nm from a fiber Bragg grating stabilized semiconductor laser diode. <i>Optics Express</i> , 2014 , 22, 13366-73	3.3	3
569	High sensitivity methane and ethane detection using low-loss mid-IR hollow-core photonic bandgap fibers 2014 ,		1
568	Gain equalization of a six-mode-group ring core multimode EDFA 2014 ,		9
567	Highly Nonlinear Tellurite Glass Fiber for Broadband Applications 2014,		2
566	An Optical Phase Quantiser Exhibiting Suppressed Phase Dependent Gain Variation 2014,		5
565	Single polarization picosecond fiber MOPA power scaled to beyond 500 W. <i>Laser Physics Letters</i> , 2014 , 11, 085103	1.5	8
564	Multi-Watt All-Fiber Frequency Doubled Laser 2014 ,		4
563	Accurate Loss and Surface Mode Modeling in Fabricated Hollow-Core Photonic Bandgap Fibers 2014 ,		2

562	First Demonstration of Cladding Pumped Few-moded EDFA for Mode Division Multiplexed Transmission 2014 ,		13	
561	Ultra-high Capacity Transmission with Few-mode Silica and Hollow-core Photonic Bandgap Fibers 2014 ,		2	
560	Homodyne OFDM using Simple Optical Carrier Recovery 2014 ,		5	
559	Minimizing Differential Modal Gain in Cladding Pumped MM-EDFAs for Mode Division Multiplexing in C and L Bands 2014 ,		2	
558	Accurate Modelling of Hollow Core Photonic Bandgap Fibre 2014 ,		1	
557	First Investigation of Longitudinal Defects in Hollow Core Photonic Bandgap Fibers 2014 ,		3	
556	All-Optical Regeneration of Phase Encoded Signals: Phase Sensitive Optical Regeneration 2013, 589-63	39	1	
555	Phase Sensitivity Characterization in Fiber-Optic Sensor Systems Using Amplifiers and TDM. <i>Journal of Lightwave Technology</i> , 2013 , 31, 1645-1653	4	12	
554	Direct Selection and Amplification of Individual Narrowly Spaced Optical Comb Modes Via Injection Locking: Design and Characterization. <i>Journal of Lightwave Technology</i> , 2013 , 31, 2287-2295	4	31	
553	Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 μm. <i>Optics Express</i> , 2013 , 21, 24281-7	3.3	73	
552	100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 fh. <i>Optics Letters</i> , 2013 , 38, 1615-7	3	54	
551	High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM. <i>Measurement Science and Technology</i> , 2013 , 24, 094024	2	3	
550	Field demonstration of mode-division multiplexing upgrade scenarios on commercial networks. <i>Optics Express</i> , 2013 , 21, 31036-46	3.3	21	
549	Towards high-capacity fibre-optic communications at the speed of light in vacuum. <i>Nature Photonics</i> , 2013 , 7, 279-284	33.9	2 00	
548	Development of Low Loss, Wide Bandwidth Hollow Core Photonic Bandgap Fibers 2013,		1	
547	Space-division multiplexing in optical fibres. <i>Nature Photonics</i> , 2013 , 7, 354-362	33.9	1688	
546	Broadband, Flat Frequency Comb Generated Using Pulse Shaping-Assisted Nonlinear Spectral Broadening. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 543-545	2.2	10	
545	Three mode Er3+ ring-doped fiber amplifier for mode-division multiplexed transmission. <i>Optics Express</i> , 2013 , 21, 10383-92	3.3	40	

544	Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication. <i>Optics Letters</i> , 2013 , 38, 1382-4	3	11
543	Overcoming the Challenges of Splicing Dissimilar Diameter Solid-Core and Hollow-Core Photonic Band Gap Fibers 2013 ,		5
542	Erbium-doped multi-element fiber amplifiers for space-division multiplexing operations. <i>Optics Letters</i> , 2013 , 38, 582-4	3	17
541	WDM Transmission at 2th over Low-Loss Hollow Core Photonic Bandgap Fiber 2013 ,		4
540	Thulium-doped fiber amplifier for optical communications at 2 µm. <i>Optics Express</i> , 2013 , 21, 9289-97	3.3	175
539	Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window. <i>Optics Express</i> , 2013 , 21, 26450-5	3.3	118
538	200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA. <i>Optics Express</i> , 2013 , 21, 258	883 3. 9	30
537	Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber. <i>Optics Express</i> , 2013 , 21, 28559-69	3.3	81
536	New Developments in Tellurite Glass Fibers 2013 ,		2
535	Hollow-core photonic bandgap fibers: technology and applications. <i>Nanophotonics</i> , 2013 , 2, 315-340	6.3	110
534	Selective amplification of frequency comb modes via optical injection locking of a semiconductor laser: influence of adjacent unlocked comb modes 2013 ,		7
533	Few-mode EDFA Supporting 5 Spatial Modes with Reconfigurable Differential Modal Gain Control 2013 ,		3
532	Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission. <i>Optics Express</i> , 2013 , 21, 24326-31	3.3	44
531	35 kW peak power picosecond pulsed thulium-doped fibre amplifier system seeded by a gain-switched laser diode at 2 fb 2013 ,		1
530	LMA effectively single-mode thulium doped fibre with normal dispersion at wavelengths around 2um 2013 ,		2
529	Highly Scalable Amplified Hybrid TDM/DWDM Array Architecture for Interferometric Fiber-Optic	4	25
	Sensor Systems. Journal of Lightwave Technology, 2013 , 31, 882-888	4	
528		4	4

526	All-fiber, ultra-wideband tunable laser at 2 fh. Optics Letters, 2013, 38, 4739-42	3	59
525	Optical properties of silicon germanium waveguides at telecommunication wavelengths. <i>Optics Express</i> , 2013 , 21, 16690-701	3.3	26
524	Gamma irradiation of minimal latency Hollow-Core Photonic Bandgap Fibres. <i>Journal of Instrumentation</i> , 2013 , 8, C12010-C12010	1	9
523	100GHz Grid-Aligned Reconfigurable Polarization Insensitive Black-Box Wavelength Converter 2013 ,		2
522	Vector Mode effects in Few Moded Erbium Doped Fiber Amplifiers 2013,		8
521	Robust Low Loss Splicing of Hollow Core Photonic Bandgap Fiber to Itself 2013 ,		2
520	Thulium-doped Fiber Amplifier for Optical Communications at 2µm 2013 ,		1
519	QAM Synthesis by Direct Modulation of Semiconductor Lasers under Injection Locking 2013,		1
518	Multimode EDFA performance in mode-division multiplexed transmission systems 2013,		3
517	Design of Four-Mode Erbium Doped Fiber Amplifier with Low Differential Modal Gain for Modal Division Multiplexed Transmissions 2013 ,		15
516	Passively Mode-Locked Fiber Laser Incorporating Adaptive Filtering and Dispersion Management 2013 ,		3
515	Fiber Amplifiers for SDM Systems 2013 ,		11
514	30.7 Tb/s (96B20 Gb/s) DP-32QAM transmission over 19-cell Photonic Band Gap Fiber 2013 ,		1
513	First Demonstration of a Broadband 37-cell Hollow Core Photonic Bandgap Fiber and Its Application to High Capacity Mode Division Multiplexing 2013 ,		7
512	Low Computational Complexity Mode Division Multiplexed OFDM Transmission over 130 km of Few Mode Fiber 2013 ,		5
511	On-Demand Spectrum and Space Defragmentation in an Elastic SDM/FDM/TDM Network with Mixed Multi- and Single-core Fiber Links 2013 ,		6
510	First Demonstration of a Low Loss 37-cell Hollow Core Photonic Bandgap Fiber and its Use for Data Transmission 2013 ,		1
509	. Journal of Lightwave Technology, 2012 , 30, 512-520	4	16

508	. IEEE Journal of Selected Topics in Quantum Electronics, 2012 , 18, 689-700	3.8	33
507	. IEEE Journal of Selected Topics in Quantum Electronics, 2012 , 18, 859-869	3.8	29
506	2012 , 50, s31-s42		151
505	Modal Gain Control in a Multimode Erbium Doped Fiber Amplifier Incorporating Ring Doping 2012 ,		2
504	Nonlinear Generation of Ultra-Flat Broadened Spectrum Based on Adaptive Pulse Shaping. <i>Journal of Lightwave Technology</i> , 2012 , 30, 1971-1977	4	17
503	Modal gain equalization in a few moded Erbium-doped fiber amplifier 2012,		1
502	Supercontinuum generation in non-silica fibers. Optical Fiber Technology, 2012, 18, 327-344	2.4	70
501	Fiber LPG Mode Converters and Mode Selection Technique for Multimode SDM. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 1922-1925	2.2	73
500	Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission 2012 ,		4
499	All-Optical Processing of Multi-level Phase Shift Keyed Signals 2012 ,		5
498	Brillouin Suppressed Highly Nonlinear Fibers 2012 ,		9
497	73.7 Tb/s (96 x 3 x 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA. <i>Optics Express</i> , 2012 , 20, B428-38	3.3	118
496	Method to Visualise and Measure Individual Modes in a Few Moded Fibre 2012,		1
495	Green-pumped, picosecond MgO:PPLN optical parametric oscillator. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2012 , 29, 144	1.7	14
494	First Demonstration of 2μm Data Transmission in a Low-Loss Hollow Core Photonic Bandgap Fiber 2012 ,		11
493	Dissemination of an optical frequency comb over fiber with 3 🛮 0(-18) fractional accuracy. <i>Optics Express</i> , 2012 , 20, 1775-82	3.3	54
492	High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator. <i>Optics Express</i> , 2012 , 20, 7008-14	3.3	18

(2012-2012)

490	Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers. <i>Optics Express</i> , 2012 , 20, 13886-95	3.3	25
489	Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA. <i>Optics Express</i> , 2012 , 20, 15008-14	3.3	30
488	High-energy, in-band pumped erbium doped fiber amplifiers. <i>Optics Express</i> , 2012 , 20, 18803-18	3.3	21
487	Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LPIpump configuration. <i>Optics Express</i> , 2012 , 20, 20835-43	3.3	65
486	Phase regeneration of DPSK signals in a highly nonlinear lead-silicate W-type fiber. <i>Optics Express</i> , 2012 , 20, 27419-24	3.3	8
485	Phase sensitive amplification in a highly nonlinear lead-silicate fiber. <i>Optics Express</i> , 2012 , 20, 1629-34	3.3	8
484	Processing of optical combs with fiber optic parametric amplifiers. <i>Optics Express</i> , 2012 , 20, 10059-70	3.3	10
483	Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers. <i>Optics Express</i> , 2012 , 20, 20980-91	3.3	42
482	All fiber components for multimode SDM systems 2012 ,		3
481	Fiber MOPA based tunable source for terahertz spectroscopy. <i>Laser Physics Letters</i> , 2012 , 9, 350-354	1.5	5
480	Phase noise characterization of injection locked semiconductor lasers to a 250 MHz optical frequency comb 2012 ,		1
479	1.45 Tbit/s, Low Latency Data Transmission through a 19-Cell Hollow Core Photonic Band Gap Fibre 2012 ,		3
478	High energy in-band pumped erbium doped pulse fibre laser 2012 ,		1
477	All-Optical broadband phase noise emulation 2012 ,		1
476	Complementary Analysis of Modal Content and Properties in a 19-cell Hollow Core Photonic Band Gap Fiber using Time-of-Flight and S2 Techniques 2012 ,		4
475	Dipole radiation model for surface roughness scattering in hollow-core fibers 2012,		1
474	Advances in Optical Signal Processing Based on Phase Sensitive Parametric Mixing 2012,		1
473	Detailed study of modal gain in a multimode EDFA supporting LP01 and LP11 mode group amplification 2012 ,		2

472	Hollow Core Photonic Bandgap fibers for Telecommunications: Opportunities and Potential Issues 2012 ,		4
471	Overcoming Electronic Limits to Optical Phase Measurements with an Optical Phase-only Amplifier 2012 ,		1
470	Designer pulses for precise machining of silicon 🖪 step towards photonic compositions 2012 ,		2
469	Phase Noise and Jitter Characterization of Pulses Generated by Optical Injection Locking to an Optical Frequency Comb 2012 ,		1
468	Homodyne Operation of a Phase-only Optical Amplifier 2012,		1
467	Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission 2012 ,		3
466	Gas Absorption between 1.8 and 2.1 μm in Low Loss (5.2 dB/km) HC-PBGF 2012 ,		1
465	Practical issues and some lessons learned from realization of phase sensitive parametric regenerators 2012 ,		1
464	Retiming of Short Pulses Using Quadratic Cascading in a Periodically Poled Lithium Niobate Waveguide. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 94-96	2.2	7
463	The Multipeak Phenomena and Nonlinear Effects in \${Q}\$-Switched Fiber Lasers. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 1763-1765	2.2	10
462	Full characterization and comparison of phase properties of narrow linewidth lasers operating in the C-band 2011 ,		6
461	500km remote interrogation of optical sensor arrays 2011 ,		4
460	The characteristics of NDM-producing Klebsiella pneumoniae from Canada. <i>Diagnostic Microbiology and Infectious Disease</i> , 2011 , 71, 106-9	2.9	49
459	. Journal of Lightwave Technology, 2011 , 29, 22-30	4	22
458	Optical Fiber Fabrication Using Novel Gas-Phase Deposition Technique. <i>Journal of Lightwave Technology</i> , 2011 , 29, 912-915	4	22
457	1.06 \$mu\$ m Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient. <i>Journal of Lightwave Technology</i> , 2011 , 29, 3461-3469	4	17
456	All-solid highly nonlinear singlemode fibers with a tailored dispersion profile. <i>Optics Express</i> , 2011 , 19, 66-80	3.3	44
455	Selective excitation of multiple Raman Stokes wavelengths (green-yellow-red) using shaped multi-step pulses from an all-fiber PM MOPA. <i>Optics Express</i> , 2011 , 19, 2085-92	3.3	6

454	Analysis of acceptable spectral windows of quadratic cascaded nonlinear processes in a periodically poled lithium niobate waveguide. <i>Optics Express</i> , 2011 , 19, 8327-35	3.3	3
453	Phase-regenerative wavelength conversion in periodically poled lithium niobate waveguides. <i>Optics Express</i> , 2011 , 19, 11705-15	3.3	6
452	Design of a Bragg fiber with large mode area for mid-infrared applications. <i>Optics Express</i> , 2011 , 19, 21	129,5;30	1413
451	Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber. <i>Optics Express</i> , 2011 , 19, B277-82	3.3	11
450	First demonstration and detailed characterization of a multimode amplifier for Space Division Multiplexed transmission systems. <i>Optics Express</i> , 2011 , 19, B952-7	3.3	114
449	Feed-forward true carrier extraction of high baud rate phase shift keyed signals using photonic modulation stripping and low-bandwidth electronics. <i>Optics Express</i> , 2011 , 19, 26594-9	3.3	7
448	High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser. <i>Optics Letters</i> , 2011 , 36, 511-3	3	71
447	Intensity measurement bend sensors based on periodically tapered soft glass fibers. <i>Optics Letters</i> , 2011 , 36, 558-60	3	65
446	Tunable synchronously-pumped fiber Raman laser in the visible and near-infrared exploiting MOPA-generated rectangular pump pulses. <i>Optics Letters</i> , 2011 , 36, 2050-2	3	5
445	Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. <i>Nature Photonics</i> , 2011 , 5, 748-752	33.9	106
444		33.9	106 39
	Photonics, 2011 , 5, 748-752		
444	Photonics, 2011 , 5, 748-752 New Delhi metallo-beta-lactamase, Ontario, Canada. <i>Emerging Infectious Diseases</i> , 2011 , 17, 306-7		39
444	Photonics, 2011, 5, 748-752 New Delhi metallo-beta-lactamase, Ontario, Canada. Emerging Infectious Diseases, 2011, 17, 306-7 Use of a pulsed fibre laser as an excitation source for photoacoustic tomography 2011,		39
444 443 442	Photonics, 2011, 5, 748-752 New Delhi metallo-beta-lactamase, Ontario, Canada. Emerging Infectious Diseases, 2011, 17, 306-7 Use of a pulsed fibre laser as an excitation source for photoacoustic tomography 2011, Optical fibre microwire sensors 2011,		39 3 1
444 443 442 441	Photonics, 2011, 5, 748-752 New Delhi metallo-beta-lactamase, Ontario, Canada. Emerging Infectious Diseases, 2011, 17, 306-7 Use of a pulsed fibre laser as an excitation source for photoacoustic tomography 2011, Optical fibre microwire sensors 2011, Bend sensors based on periodically tapered soft glass fibers 2011, Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA. Laser Physics	10.2	39 3 1 2
444 443 442 441 440	New Delhi metallo-beta-lactamase, Ontario, Canada. <i>Emerging Infectious Diseases</i> , 2011 , 17, 306-7 Use of a pulsed fibre laser as an excitation source for photoacoustic tomography 2011 , Optical fibre microwire sensors 2011 , Bend sensors based on periodically tapered soft glass fibers 2011 , Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA. <i>Laser Physics Letters</i> , 2011 , 8, 747-753	10.2	39 3 1 2 11

436	Silica-based highly nonlinear fibers with a high SBS threshold 2011 ,	7
435	Science and technology challenges in XXIst century optical communications. <i>Comptes Rendus Physique</i> , 2011 , 12, 387-416	25
434	Highly efficient, high power, inband-pumped Erbium/Ytterbium-codoped fiber laser 2011,	1
433	First demonstration of multimode amplifier for spatial division multiplexed transmission systems 2011 ,	17
432	Reducing loss in practical single ring antiresonant hollow core fibres 2011,	1
431	All-optical regeneration based on phase sensitive amplification 2011,	1
430	Optical racetrack ring-resonator based on two U-bent microfibers. <i>Applied Physics Letters</i> , 2011 , 98, 0211,09	14
429	Optimising the Performances of Hollow Antiresonant Fibres 2011 ,	6
428	Phase Sensitive Amplification in a Highly Nonlinear Lead-Silicate Fibre 2011 ,	1
427	Gridless Optical Networking Field Trial: Flexible Spectrum Switching, Defragmentation and Transport of 10G/40G/100G/555G over 620-km Field Fiber 2011 ,	17
426	Fusion-Spliced Highly Nonlinear Soft-glass W-type Index Profiled Fibre with Ultra-flattened, Low Dispersion Profile in 1.55µm Telecommunication Window 2011 ,	3
425	Flat, Broadband Supercontinuum Generation at Low Pulse Energies in a Dispersion-Tailored Lead-Silicate Fibre 2011 ,	2
424	QPSK Phase and Amplitude Regeneration at 56 Gbaud in a Novel Idler-Free Non-Degenerate Phase Sensitive Amplifier 2011 ,	11
423	Experimental Demonstration of a Gridless Multi-granular Optical Network Supporting Flexible Spectrum Switching 2011 ,	15
422	Phase-Sensitive Wavelength Conversion Based on Cascaded Quadratic Processes in Periodically Poled Lithium Niobate Waveguides 2011 ,	1
421	Soft Glass Based Large Mode Area Photonic Bandgap Fibre for Mid-Infrared Applications 2011 ,	1
420	Phase-Encoded Signal Regeneration Exploiting Phase Sensitive Amplification 2011,	2
419	All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nature Photonics, 2010 , 4, 690-695	412

(2010-2010)

418	SINGLE MODE ERBIUM YTTERBIUM-DOPED FIBER LASER WITH MULTIMODE PUMPING. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2010 , 19, 203-208	0.8	
417	Saturation effects in degenerate phase sensitive fiber optic parametric amplifiers 2010,		3
416	All-optical phase-regenerative multicasting of 40 Gbit/s DPSK signal in a degenerate phase sensitive amplifier 2010 ,		4
415	Recent advances in highly nonlinear fibres 2010 ,		3
414	All-optical phase and amplitude regeneration properties of a 40Gbit/s DPSK black-box phase sensitive amplifier 2010 ,		1
413	A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths 2010 ,		2
412	Wavelength Conversion in a Short Length of a Solid LeadBilicate Fiber. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 628-630	2.2	15
411	56-W Frequency-Doubled Source at 530 nm Pumped by a Single-Mode, Single-Polarization, Picosecond, Yb \$^{3+}\$-Doped Fiber MOPA. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 893-895	2.2	13
410	Multichannel Wavelength Conversion of 40-Gb/s Nonreturn-to-Zero DPSK Signals in a LeadBilicate Fiber. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 1153-1155	2.2	3
409	Embedded Optical Microfiber Coil Resonator With Enhanced High-\$Q\$. <i>IEEE Photonics Technology Letters</i> , 2010 ,	2.2	7
408	Wide Bandwidth Experimental Study of Nondegenerate Phase-Sensitive Amplifiers in Single- and Dual-Pump Configurations. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 1781-1783	2.2	11
407	Detailed characterization of afiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation. <i>Optics Express</i> , 2010 , 18, 4130-7	3.3	54
406	Picosecond fiber MOPA pumped supercontinuum source with 39 W output power. <i>Optics Express</i> , 2010 , 18, 5426-32	3.3	86
405	High-power, variable repetition rate, picosecond optical parametric oscillator pumped by an amplified gain-switched diode. <i>Optics Express</i> , 2010 , 18, 7602-10	3.3	22
404	OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide. <i>Optics Express</i> , 2010 , 18, 10282-8	3.3	17
403	Polarisation maintaining 100W Yb-fiber MOPA producing microJ pulses tunable in duration from 1 to 21 ps. <i>Optics Express</i> , 2010 , 18, 14385-94	3.3	43
402	Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm. <i>Optics Express</i> , 2010 , 18, 15747-56	3.3	23
401	Wide spectral range confocal microscope based on endlessly single-mode fiber. <i>Optics Express</i> , 2010 , 18, 18811-9	3.3	4

400	Highly birefringent silica microfiber. <i>Optics Letters</i> , 2010 , 35, 378-80	3	37
399	Polarization-maintaining optical microfiber. <i>Optics Letters</i> , 2010 , 35, 2034-6	3	36
398	Excitation of individual Raman Stokes lines in the visible regime using rectangular-shaped nanosecond optical pulses at 530 nm. <i>Optics Letters</i> , 2010 , 35, 2433-5	3	10
397	Compact, high-pulse-energy, picosecond optical parametric oscillator. <i>Optics Letters</i> , 2010 , 35, 3580-2	3	26
396	Elimination of the chirp of optical pulses through cascaded nonlinearities in periodically poled lithium niobate waveguides. <i>Optics Letters</i> , 2010 , 35, 3724-6	3	2
395	Field Experiments With a Grooming Switch for OTDM Meshed Networking. <i>Journal of Lightwave Technology</i> , 2010 , 28, 316-327	4	11
394	High power fiber lasers: current status and future perspectives [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2010 , 27, B63	1.7	1224
393	Applied physics. Filling the light pipe. <i>Science</i> , 2010 , 330, 327-8	33.3	201
392	First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier 2010 ,		27
391	Applications of highly nonlinear dispersion tailored lead silicate fibres for high speed optical communications 2010 ,		1
390	A silica based highly nonlinear fibre with improved threshold for stimulated brillouin scattering 2010 ,		13
389	Phase locking and carrier extraction schemes for phase sensitive amplification 2010 ,		2
388	Generation of ultra-high repetition rate pulses in a highly nonlinear dispersion-tailored compound glass fibre 2010 ,		2
387	Analysis of modal interference in Photonic Bandgap Fibres 2010 ,		6
386	Adaptive extraction of emotion-related EEG segments using multidimensional directed information in time-frequency domain. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference,	0.9	5
385	2010 , 2010, 1-4 Over 55W of frequency doubled light at 530 nm pumped by an all-fiber diffraction limited picosecond fibre MOPA 2010 ,		1
384	Experimental Investigation of Wide Bandwidth Single and Dual Pump non-Degenerate Phase Sensitive Amplifiers 2010 ,		1
383	Generation of compressed optical pulses beyond 160 GHz based on two injection-locked CW lasers 2010 ,		2

(2009-2010)

382	Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths. <i>Optical Fiber Technology</i> , 2010 , 16, 378-391	2.4	37
381	Picosecond Fiber MOPA Pumped Supercontinuum Source With 39 W Output Power 2010 ,		1
380	Multichannel Wavelength Conversion of 40Gbit/s NRZ DPSK Signals in a Highly Nonlinear Dispersion Flattened Lead Silicate Fibre 2010 ,		2
379	All-optical phase regeneration of 40Gbit/s DPSK signals in a black-box phase sensitive amplifier 2010 ,		9
378	OTDM to WDM Format Conversion Based on Cascaded SHG/DFG in a Single PPLN Waveguide 2010 ,		4
377	Generation of high repetition rate (>100 GHz) ultrastable pulse trains from a coherent optical beat-signal through nonlinear compression using a high SBS-threshold fiber 2010 ,		1
376	Highly nonlinear non-silica glass microstructured optical fibers with near-zero dispersion and dispersion slope for 1.55µm applications 2009 ,		1
375	Control of modal properties and modal effects in air guiding photonic bandgap fibres 2009,		1
374	Efficient all-optical wavelength converter using saw-tooth pulses 2009,		1
373	Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains. <i>Microbiology (United Kingdom)</i> , 2009 , 155, 3992-4004	2.9	31
372	Visible and mid-IR output using a fibre laser pump source 2009 ,		1
371	Externally modulated diode-seeded Yb3+-doped fiber MOPA pumped high power optical parametric oscillator 2009 ,		2
370	In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis. <i>Electronics Letters</i> , 2009 , 45, 153	1.1	4
369	. IEEE Journal of Selected Topics in Quantum Electronics, 2009 , 15, 385-392	3.8	22
368	Multiple access interference rejection in OCDMA using a two-photon absorption based semiconductor device. <i>Optics Communications</i> , 2009 , 282, 1281-1286	2	3
367	Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell. <i>Sensors and Actuators B: Chemical</i> , 2009 , 139, 30-34	8.5	32
366	Multi-wavelength all-optical regeneration techniques 2009,		2
365	Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber. <i>Optics Letters</i> , 2009 , 34, 2369-71	3	37

364	Improved method for estimating the minimum length of modal filters fabricated for stellar interferometry. <i>Optics Express</i> , 2009 , 17, 1935-46	3.3	3
363	Optical microfiber coupler for broadband single-mode operation. <i>Optics Express</i> , 2009 , 17, 5273-8	3.3	83
362	Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper. <i>Optics Express</i> , 2009 , 17, 8362-9	3.3	14
361	Optical grooming switch with regenerative functionality for transparent interconnection of networks. <i>Optics Express</i> , 2009 , 17, 15173-85	3.3	9
360	Comparative study of the effective single mode operational bandwidth in sub-wavelength optical wires and conventional single-mode fibers. <i>Optics Express</i> , 2009 , 17, 16619-24	3.3	9
359	Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm. <i>Optics Express</i> , 2009 , 17, 20249-55	3.3	29
358	Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide. <i>Optics Express</i> , 2009 , 17, 20393-400	3.3	63
357	High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping. <i>Optics Express</i> , 2009 , 17, 20927-37	3.3	78
356	Optical fiber nanowires and microwires: fabrication and applications. <i>Advances in Optics and Photonics</i> , 2009 , 1, 107	16.7	232
355	. Journal of Lightwave Technology, 2009 , 27, 1135-1141	4	10
354	Efficient All-Optical Wavelength-Conversion Scheme Based on a Saw-Tooth Pulse Shaper. <i>IEEE Photonics Technology Letters</i> , 2009 , 21, 1837-1839	2.2	15
353	Organic memory device with large conductance switching based on oxadiazoleflontaining polyether thin films 2009 ,		1
352	Optical Parabolic Pulse Generation and Applications. IEEE Journal of Quantum Electronics, 2009, 45, 14	82±1489	9 57
351	Optical WDM regeneration: status and future prospects 2009 ,		3
350	An Optical Frequency Comb Generator as a Broadband Pulse Source 2009,		4
349	Adaptive Phase Shaping in a Fiber Chirped Pulse Amplification System. <i>Springer Series in Chemical Physics</i> , 2009 , 953-955	0.3	
348	Field Trial of WDM-OTDM Transmultiplexing employing Photonic Switch Fabric-based Buffer-less Bit-interleaved Data Grooming and All-Optical Regeneration 2009 ,		3
347	Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone. FEBS Letters, 2008, 582, 3979-84	3.8	27

(2008-2008)

346	Investigation of Simultaneous 2R Regeneration of Two 40-Gb/s Channels in a Single Optical Fiber. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 270-272	2.2	18	
345	Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1676-1678	2.2	17	
344	Timing Jitter Tolerant All-Optical TDM Demultiplexing Using a Saw-Tooth Pulse Shaper. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1992-1994	2.2	8	
343	Full Characterization of Low-Power Picosecond Pulses From a Gain-Switched Diode Laser Using Electrooptic Modulation-Based Linear FROG. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 505-507	2.2	10	
342	Analysis of the Dynamic Responses of SOA Wavelength Converters Using Linear Frequency Resolved Gating Technique. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1079-1081	2.2	O	
341	Compensation of Linear Distortions by Using XPM With Parabolic Pulses as a Time Lens. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1097-1099	2.2	34	
340	Four-Channel All-Fiber Dispersion-Managed 2R Regenerator. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1169-1171	2.2	14	
339	Soliton Spectral Tunneling in Dispersion-Controlled Holey Fibers. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1414-1416	2.2	25	
338	An Efficient Wavelength Converter Exploiting a Grating-Based Saw-Tooth Pulse Shaper. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1461-1463	2.2	26	
337	Dispersion Management in Highly Nonlinear, Carbon Disulfide Filled Holey Fibers. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1449-1451	2.2	9	
336	Comment on the reported fiber attenuations in the visible regime in "Fabrication of glass photonic crystal fibers with a die-cast process". <i>Applied Optics</i> , 2008 , 47, 5078-80; discussion 5081	0.2	1	
335	. Journal of Lightwave Technology, 2008 , 26, 3110-3117	4	8	
334	Optical interconnection of core and metro networks [Invited]. <i>Journal of Optical Networking</i> , 2008 , 7, 928		4	
333	Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, 1537	1.7	41	
332	Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration. <i>Optics Express</i> , 2008 , 16, 2264-75	3.3	25	
331	Robustly single mode hollow core photonic bandgap fiber. <i>Optics Express</i> , 2008 , 16, 4337-46	3.3	62	
330	High energy femtosecond fiber chirped pulse amplification system with adaptive phase control. <i>Optics Express</i> , 2008 , 16, 5813-21	3.3	18	
329	Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications. <i>Optics Express</i> , 2008 , 16, 13651-6	3.3	105	

328	Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter. <i>Optics Express</i> , 2008 , 16, 14661-7	3.3	76
327	High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping. <i>Optics Express</i> , 2008 , 16, 15074-89	3.3	22
326	The effect of periodicity on the defect modes of large mode area microstructured fibers. <i>Optics Express</i> , 2008 , 16, 18631-45	3.3	7
325	Designing Tapered Holey Fibers for Soliton Compression. <i>IEEE Journal of Quantum Electronics</i> , 2008 , 44, 192-198	2	16
324	Detailed Comparison of Injection-Seeded and Self-Seeded Performance of a 1060-nm Gain-Switched Fabry Pflot Laser Diode. <i>IEEE Journal of Quantum Electronics</i> , 2008 , 44, 645-651	2	8
323	2R regeneration architectures based on multi-segmented fibres 2008 ,		2
322	Timing jitter tolerant OTDM demultiplexing using a saw-tooth pulse shaper 2008,		1
321	Efficient Wavelength Conversion Using Triangular Pulses Generated Using a SuperStructured Fiber Bragg Grating 2008 ,		11
320	Developing Single-Mode Tellurite Glass Holey Fiber for Infrared Nonlinear Applications. <i>Advances in Science and Technology</i> , 2008 , 55, 108-117	0.1	3
319	Efficient higher-order mode filtering in multimode optical fiber based on an optical microwire 2008 ,		2
318	Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 6716-6718	1.4	18
317	Periodic Signal Processing Using a Brillouin Gain Comb 2008 ,		1
316	Experimental Investigation of a Dispersion-Managed Multi-channel 2R Optical Regenerator 2008,		3
315	Investigation of Timing Jitter Reduction in a bidirectional 2R All-Optical Mamyshev Regenerator 2008 ,		2
314	TDM-to-WDM conversion from 130 Gbit/s to 3 🖽 3 Gbit/s using XPM in a NOLM switch 2008 ,		1
313	An all-optical grooming switch to interconnect access and metro ring networks 2008,		1
312	Photonic bandgap fiber optical correlation spectroscopy gas sensor 2008,		1
311	Broadband supercontinuum using single-mode/dual-mode tellurite glass holey fibers with large mode area 2008 ,		1

310	Cavity ring-down in a photonic bandgap fiber gas cell 2008 ,		4
309	High-brightness 210 🏿 pulsed Raman fiber source 2008 ,		2
308	Recent Advances in Highly Nonlinear Microstructured Optical Fibers and their Applications 2008,		1
307	In-situ thermal/Brillouin characterization of a high-power fiber laser based on Brillouin optical time domain analysis 2008 ,		1
306	Characterization of XGM and XPM in a SOA-MZI using a Linear Frequency Resolved Gating Technique. <i>Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS</i> , 2007 ,		4
305	Distributed-Phase OCDMA Encoder D ecoders Based on Fiber Bragg Gratings. <i>IEEE Photonics Technology Letters</i> , 2007 , 19, 574-576	2.2	2
304	Low Walk-Off Kerr-Shutter Using a Dispersion-Shifted Lead Silicate Holey Fiber. <i>IEEE Photonics Technology Letters</i> , 2007 , 19, 1112-1114	2.2	2
303	Self-similarity in ultrafast nonlinear optics. <i>Nature Physics</i> , 2007 , 3, 597-603	16.2	243
302	Look on the positive side! The orientation, identification and bioenergetics of 'Archaeal' membrane-bound nitrate reductases. <i>FEMS Microbiology Letters</i> , 2007 , 276, 129-39	2.9	92
301	Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2007 , 13, 738-749	3.8	145
300	Generalisation and Experimental Validation of Design Rules for Self-Phase Modulation-based 2R-Regenerators 2007 ,		7
299	Comparison of Mode Properties of 7 and 19 Cells Core Hollow-Core Photonic Crystal Fibers 2007 ,		2
298	Demonstration of a 16-channel code-reconfigurable OCDMA/DWDM system 2007,		3
297	Self-Phase Modulation-based 2R optical regenerator for the simultaneous processing of two WDM channels 2007 ,		2
296	High Average Power, High Energy, Femto-second Fiber Chirped Pulse Amplification System 2007,		1
295	Ultraviolet writing of channel waveguides in proton-exchanged LiNbO3. <i>Journal of Applied Physics</i> , 2007 , 101, 014110	2.5	3
294	Temporal-Talbot Effect Based All-Optical Clock Recovery Using Bragg gratings 2007,		4
293	Suspended-core holey fiber for evanescent-field sensing. <i>Optical Engineering</i> , 2007 , 46, 010503	1.1	79

292	High-power high-brightness green laser based on a frequency doubled picosecond fiber laser 2007,		1
291	Hollow-core photonic bandgap fibers based on a square lattice cladding. <i>Optics Letters</i> , 2007 , 32, 2282-4	13	15
290	Delay-gain decoupling in Brillouin-assisted slow light. <i>Optics Letters</i> , 2007 , 32, 2701-3	3	2
289	Optical manipulation of microspheres along a subwavelength optical wire. <i>Optics Letters</i> , 2007 , 32, 3041	133	96
288	Nonlinear tapered holey fibers with high stimulated Brillouin scattering threshold and controlled dispersion. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 2185	1.7	21
287	Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers. <i>Optics Express</i> , 2007 , 15, 596-601	3.3	34
286	Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. <i>Optics Express</i> , 2007 , 15, 852-64	3.3	72
285	Efficient white light generation in secondary cores of holey fibers. <i>Optics Express</i> , 2007 , 15, 3729-36	3.3	19
284	Design scaling rules for 2R-optical self-phase modulation-based regenerators. <i>Optics Express</i> , 2007 , 15, 5100-13	3.3	68
283	Brillouin assisted slow-light enhancement via Fabry-Perot cavity effects. <i>Optics Express</i> , 2007 , 15, 5126-3	35 3	16
282	Micro-channels machined in microstructured optical fibers by femtosecond laser. <i>Optics Express</i> , 2007 , 15, 8731-6	3.3	93
281	Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation. <i>Optics Express</i> , 2007 , 15, 17577-86	3.3	45
280	. Journal of Lightwave Technology, 2007 , 25, 216-221	4	19
279	. Journal of Lightwave Technology, 2007 , 25, 394-401	4	17
278	. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1480-1486	3.8	8
277	Fiber Design For High-Power Low-Cost Yb:Al-Doped Fiber Laser Operating at 980 nm. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2007 , 13, 588-597	3.8	11
276	Linear-distortion compensation using XPM with parabolic pulses 2007,		3
275	All-optical 160 Gbit/s RZ data retiming system incorporating a pulse shaping fibre Bragg grating 2007 ,		6

274	Linear frequency resolved optical gating as a line monitoring tool 2006,		1
273	80 W green laser based on a frequency-doubled picosecond, single-mode, linearly-polarized fiber laser 2006 ,		2
272	Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m Bismuth-oxide fiber 2006 ,		8
271	Novel fabrication method of highly-nonlinear silica holey fibres 2006,		1
270	Advances and limitations in the modeling of fabricated photonic bandgap fibers 2006,		1
269	Rapidly reconfigurable phase code generation and recognition using fiber Bragg gratings 2006,		1
268	Realistic designs of silica hollow-core bandgap fibers free of surface 2006,		1
267	Reconfigurable all-optical packet switching based on fiber Bragg gratings 2006,		2
266	Comparative study of spectrum-sliced incoherent light systems employing SOA-based noise suppression 2006 ,		1
265	High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 1013-1015	2.2	75
264	Errata to All-Optical Pulse Reshaping and Retiming Systems Incorporating Pulse Shaping Fiber Bragg Grating [] <i>Journal of Lightwave Technology</i> , 2006 , 24, 2963-2963	4	1
263	Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 829-831	2.2	45
262	Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 1216-1218	2.2	12
261	Optical regeneration using self-phase modulation and quasi-continuous filtering. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 1350-1352	2.2	3
260	Performance comparison of spectrum-slicing techniques employing SOA-based noise suppression at the transmitter or receiver. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 1494-1496	2.2	6
259	A Reconfigurable Optical Header Recognition System for Optical Packet Routing Applications. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 2395-2397	2.2	2
258	Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 fb - 5 fb 2006 ,		10
257	Opportunities in high-power fiber lasers 2006 ,		1

256	Cascaded-chi(2)-interaction-based frequency-resolved optical gating in a periodically poled LiNbO3 waveguide. <i>Optics Letters</i> , 2006 , 31, 244-6	3	2
255	Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal. <i>Optics Letters</i> , 2006 , 31, 1232-4	3	20
254	Brillouin characterization of holey optical fibers. <i>Optics Letters</i> , 2006 , 31, 2541-3	3	11
253	Pulse compression at 1.06 microm in dispersion-decreasing holey fibers. <i>Optics Letters</i> , 2006 , 31, 3504-6	53	40
252	Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime. <i>Optics Express</i> , 2006 , 14, 3161-70	3.3	76
251	Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles. <i>Optics Express</i> , 2006 , 14, 4445-51	3.3	90
250	2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber. <i>Optics Express</i> , 2006 , 14, 5038	3- 31.4	21
249	Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. <i>Optics Express</i> , 2006 , 14, 7617-22	3.3	114
248	Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers. <i>Optics Express</i> , 2006 , 14, 7974-85	3.3	62
247	High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs. <i>Optics Express</i> , 2006 , 14, 9611-6	3.3	67
246	Square core jacketed air-clad fiber. <i>Optics Express</i> , 2006 , 14, 10345-50	3.3	27
245	Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system. <i>Optics Express</i> , 2006 , 14, 10996-1001	3.3	64
244	Microstructured fibers for broadband wavefront filtering in the mid-IR. Optics Express, 2006, 14, 11773-	863	8
243	Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling. <i>Optics Express</i> , 2006 , 14, 12846-58	3.3	17
242	High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation. <i>Journal of Lightwave Technology</i> , 2006 , 24, 183-190	4	86
241	. Journal of Lightwave Technology, 2006 , 24, 357-364	4	26
240	OTDM add-drop multiplexer based on time-frequency signal processing. <i>Journal of Lightwave Technology</i> , 2006 , 24, 2720-2732	4	12
239	1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system 2006 , 6102, 348		8

238 Microstructured fibres: a positive impact on defence technology? **2006**, 6397, 639702

237	Short pulse high power fiber laser systems 2005 ,		1
236	Advances in microstructured fiber technology 2005,		1
235	. Journal of Lightwave Technology, 2005 , 23, 2399-2409	4	88
234	Frequency-resolved optical gating in the 155 µm band via cascaded chi^(2) processes. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2005 , 22, 1985	1.7	4
233	Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. <i>Optics Express</i> , 2005 , 13, 3728-36	3.3	173
232	The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers. <i>Optics Express</i> , 2005 , 13, 9115-24	3.3	53
231	Optical parametric oscillator with a pulse repetition rate of 39 GHz and 2.1-W signal average output power in the spectral region near 1.5 microm. <i>Optics Letters</i> , 2005 , 30, 290-2	3	8
230	Microstructured fibers for sensing applications 2005 , 6005, 78		19
229	Efficient low-threshold lasers based on an erbium-doped holey fiber. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 25-27	2.2	17
228	Improving signal quality in a spectrum-sliced WDM system using SOA-based noise reduction. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 241-243	2.2	16
227	Synchronously pumped optical parametric oscillator with a repetition rate of 81.8 GHz. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 483-485	2.2	14
226	Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 306-308	2.2	28
225	Frequency-resolved optical gating in a quasi-phase-matched LiNbO3 waveguide. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 849-851	2.2	3
224	Direct characterization of the spatial effective refractive index profile in Bragg gratings. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 2685-2687	2.2	9
223	Extruded singlemode, high-nonlinearity, tellurite glass holey fibre. <i>Electronics Letters</i> , 2005 , 41, 835	1.1	52
222	Generation of ultra-flat SPM-broadened spectra in a highly nonlinear fiber using pulse pre-shaping in a fiber Bragg grating 2005 ,		6
221	Microstructured fibers for high power applications 2005,		2

220	Improving bending losses in holey fibers 2005 ,		2
219	Heavy metal oxide glass holey fibers with high nonlinearity 2005,		3
218	Chaperones involved in assembly and export of N-oxide reductases. <i>Biochemical Society Transactions</i> , 2005 , 33, 124-6	5.1	9
217	Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 1914-1916	2.2	13
216	40 GHz Adiabatic Soliton Generation from a Dual Frequency Beat Signal Using Dispersion Decreasing Fiber Based Raman Amplification 2005 , 409-415		
215	Compound-glass optical nanowires. <i>Electronics Letters</i> , 2005 , 41, 400	1.1	89
214	Supercontinuum generation in tapered bismuth silicate fibres. <i>Electronics Letters</i> , 2005 , 41, 795	1.1	31
213	321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source 2005 ,		11
212	Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices. <i>Applied Physics Letters</i> , 2005 , 87, 081110	3.4	27
211	Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 8460-5	11.5	78
21 0	32 W of average power in 24-fs pulses from a passively mode-locked thin disk laser with nonlinear fiber compression 2005 ,		1
209	Erbium Doped Holey Fiber Devices 2004 , OMD4		2
208	Cold atoms probe the magnetic field near a wire. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2004 , 37, L15-L20	1.3	36
207	Intensity noise suppression in fibre DFB laser using gain saturated SOA. <i>Electronics Letters</i> , 2004 , 40, 107	1.1	14
206	Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. <i>Structure</i> , 2004 , 12, 95-104	5.2	177
205	Wavelength tunable 10 GHz, 3 ps pulse source using a dispersion decreasing fiber based nonlinear optical loop mirror. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2004 , 10, 181-185	3.8	9
204	Filtering effects in a spectrum-sliced WDM system using SOA-based noise reduction. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 680-682	2.2	27
203	Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1167-1169	2.2	11

(2003-2004)

202	All-optical packet compression based on time-to-wavelength conversion. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1688-1690	2.2	13
201	977-nm all-fiber DFB laser. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 2442-2444	2.2	12
200	Fabrication and optical properties of lead silicate glass holey fibers. <i>Journal of Non-Crystalline Solids</i> , 2004 , 345-346, 293-296	3.9	4
199	Polarization mode dispersion reduction in spun large mode area silica holey fibres. <i>Optics Express</i> , 2004 , 12, 1972-7	3.3	26
198	40 GHz adiabatic compression of a modulator based dual frequency beat signal using Raman amplification in dispersion decreasing fiber. <i>Optics Express</i> , 2004 , 12, 2187-92	3.3	10
197	Ultra-low-loss optical fiber nanotapers. <i>Optics Express</i> , 2004 , 12, 2258-63	3.3	325
196	High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber. <i>Optics Express</i> , 2004 , 12, 3452-8	3.3	19
195	Bismuth glass holey fibers with high nonlinearity. <i>Optics Express</i> , 2004 , 12, 5082-7	3.3	196
194	High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser. <i>Electronics Letters</i> , 2004 , 40, 928	1.1	30
193	Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing >25-W average power. <i>Optics Letters</i> , 2004 , 29, 2073-5	3	52
193		3	52
	Optics Letters, 2004 , 29, 2073-5	1.1	
192	Optics Letters, 2004, 29, 2073-5 Fundamentals and applications of silica and nonsilica holey fibers 2004, 5350, 35 Second-harmonic generation in hexagonally-poled lithium niobate slab waveguides. <i>Electronics</i>		4
192 191	Optics Letters, 2004, 29, 2073-5 Fundamentals and applications of silica and nonsilica holey fibers 2004, 5350, 35 Second-harmonic generation in hexagonally-poled lithium niobate slab waveguides. Electronics Letters, 2003, 39, 75 Seeded erbiumytterbium codoped fibre amplifier source with 87 W of single-frequency output	1.1	4
192 191 190	Pundamentals and applications of silica and nonsilica holey fibers 2004, 5350, 35 Second-harmonic generation in hexagonally-poled lithium niobate slab waveguides. Electronics Letters, 2003, 39, 75 Seeded erbiumlytterbium codoped fibre amplifier source with 87 W of single-frequency output power. Electronics Letters, 2003, 39, 1717 Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high	1.1	4 4 6
192 191 190 189	Fundamentals and applications of silica and nonsilica holey fibers 2004, 5350, 35 Second-harmonic generation in hexagonally-poled lithium niobate slab waveguides. Electronics Letters, 2003, 39, 75 Seeded erbium@tterbium codoped fibre amplifier source with 87 W of single-frequency output power. Electronics Letters, 2003, 39, 1717 Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber 2003,	1.1	4 4 6 8
192 191 190 189	Fundamentals and applications of silica and nonsilica holey fibers 2004, 5350, 35 Second-harmonic generation in hexagonally-poled lithium niobate slab waveguides. <i>Electronics Letters</i> , 2003, 39, 75 Seeded erbium@tterbium codoped fibre amplifier source with 87 W of single-frequency output power. <i>Electronics Letters</i> , 2003, 39, 1717 Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber 2003, Fibre Bragg grating compression-tuned over 110 nm. <i>Electronics Letters</i> , 2003, 39, 509	1.1	4 4 6 8 39

184	Holey optical fibres: Fundamental properties and device applications. <i>Comptes Rendus Physique</i> , 2003 , 4, 175-186	1.4	38
183	Demonstration of a full-duplex bidirectional spectrally interleaved OCDMA/DWDM system. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 482-484	2.2	5
182	A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 437-439	2.2	42
181	Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 440-442	2.2	83
180	Reconfigurable multilevel phase-shift keying encoder-decoder for all-optical networks. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 431-433	2.2	24
179	Fiber-DFB laser array pumped with a single 1-W CW Yb-fiber laser. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 655-657	2.2	13
178	The role of confinement loss in highly nonlinear silica holey fibers. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 1246-1248	2.2	42
177	A 36-channel x 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 1689-1691	2.2	39
176	. Journal of Lightwave Technology, 2003 , 21, 2518-2523	4	13
175	Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. <i>Optics Letters</i> , 2003 , 28, 1951-3	3	95
174	Small-core silica holey fibers: nonlinearity and confinement loss trade-offs. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2003 , 20, 1427	1.7	100
173	Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. <i>Optics Express</i> , 2003 , 11, 3568-73	3.3	133
172	Ytterbium-doped large-core fibre laser with 272 W output power. <i>Electronics Letters</i> , 2003 , 39, 977	1.1	25
171	A quasi-mode interpretation of radiation modes in long-period fiber gratings. <i>IEEE Journal of Quantum Electronics</i> , 2003 , 39, 1135-1142	2	9
170	Characterization of the expression and activity of the periplasmic nitrate reductase of Paracoccus pantotrophus in chemostat cultures. <i>Microbiology (United Kingdom)</i> , 2003 , 149, 1533-1540	2.9	19
169	Rhodobacter capsulatus gains a competitive advantage from respiratory nitrate reduction during light-dark transitions. <i>Microbiology (United Kingdom)</i> , 2003 , 149, 941-948	2.9	14
168	The mathematical modelling of capillary drawing for holey fibre manufacture. <i>Journal of Engineering Mathematics</i> , 2002 , 43, 201-227	1.2	73
167	Holey fibers: new possibilities for guiding and manipulating light 2002,		4

166	High nonlinearity extruded single-mode holey optical fibers 2002,		9
165	Holey fibers: fundamentals and applications 2002,		1
164	Spectral properties of bacterial nitric oxide reductase. <i>Biochemical Society Transactions</i> , 2002 , 30, A76-A	A7561	
163	Keyed axis single-polarisation all-fibre DFB laser. <i>Electronics Letters</i> , 2002 , 38, 1537	1.1	9
162	Practical low-noise stretched-pulse Yb(3+)-doped fiber laser. <i>Optics Letters</i> , 2002 , 27, 291-3	3	56
161	Raman effects in a highly nonlinear holey fiber: amplification and modulation. <i>Optics Letters</i> , 2002 , 27, 424-6	3	67
160	Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering. <i>Optics Letters</i> , 2002 , 27, 927-9	3	49
159	Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser. <i>Optics Letters</i> , 2002 , 27, 1052-4	3	24
158	Tunable, femtosecond pulse source operating in the range 106¶33 m based on an Yb^3+-doped holey fiber amplifier. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2002 , 19, 1286	1.7	48
157	Temperature and wavelength tuning of second-, third-, and fourth-harmonic generation in a two-dimensional hexagonally poled nonlinear crystal. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2002 , 19, 2263	1.7	52
156	Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source. <i>Optics Express</i> , 2002 , 10, 382-7	3.3	58
155	. Journal of Lightwave Technology, 2002 , 20, 36-46	4	26
154	All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber Bragg gratings. <i>IEEE Photonics Technology Letters</i> , 2002 , 14, 203-20	05 ^{2.2}	15
153	Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s quarternary phase coding gratings. <i>IEEE Photonics Technology Letters</i> , 2002 , 14, 227-229	2.2	63
152	A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement. <i>IEEE Photonics Technology Letters</i> , 2002 , 14, 876-878	2.2	61
151	Extruded singlemode non-silica glass holey optical fibres. <i>Electronics Letters</i> , 2002 , 38, 546	1.1	116
150	Continuous-wave pumped holey fiber Raman laser 2002 ,		5
149	Confinement loss in highly nonlinear holey optical fibres 2002,		1

148	Modelocked laser based on ytterbium doped holey fibre. <i>Electronics Letters</i> , 2001 , 37, 560	1.1	30
147	Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. <i>Cellular and Molecular Life Sciences</i> , 2001 , 58, 165-78	10.3	321
146	A tunable, femtosecond pulse source operating in the range 1.06-1.33 microns based on an Yb doped holey fiber amplifier 2001 ,		1
145	Demonstration of thermal poling in holey fibres. <i>Electronics Letters</i> , 2001 , 37, 107	1.1	19
144	Generation, recognition and recoding of 64-chip bipolar optical code sequences using superstructured fibre Bragg gratings. <i>Electronics Letters</i> , 2001 , 37, 190	1.1	4
143	Nanosecond dynamics of a gallium mirror\(\) light-induced reflectivity change. <i>Physical Review B</i> , 2001 , 63,	3.3	22
142	Light-induced metallization at the gallium-silica interface. <i>Physical Review B</i> , 2001 , 64,	3.3	11
141	7.7 mJ pulses from a large core Yb-doped cladding pumped Q-switched fibre laser 2001 ,		5
140	A practical, low-noise, stretched pulse Yb/sup 3+/ doped fiber laser 2001 ,		1
139	Reduction of interchannel interference noise in a two-channel grating-based OCDMA system using a nonlinear optical loop mirror. <i>IEEE Photonics Technology Letters</i> , 2001 , 13, 529-531	2.2	17
138	Broad-band second-harmonic generation in holey optical fibers. <i>IEEE Photonics Technology Letters</i> , 2001 , 13, 981-983	2.2	25
137	Demonstration of a 64-chip OCDMA system using superstructured fiber gratings and time-gating detection. <i>IEEE Photonics Technology Letters</i> , 2001 , 13, 1239-1241	2.2	21
136	Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range. <i>Electronics Letters</i> , 2001 , 37, 1116	1.1	28
135	Sensing with microstructured optical fibres. <i>Measurement Science and Technology</i> , 2001 , 12, 854-858	2	266
134	Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity. <i>Biochemistry</i> , 2001 , 40, 11294-307	3.2	102
133	Comparative study of large-mode holey and conventional fibers. <i>Optics Letters</i> , 2001 , 26, 1045-7	3	51
132	2R-regenerative all-optical switch based on a highly nonlinear holey fiber. <i>Optics Letters</i> , 2001 , 26, 1233	3-5	107
131	. Journal of Lightwave Technology, 2001 , 19, 746-752	4	96

130	. Journal of Lightwave Technology, 2001 , 19, 1352-1365	4	103
129	Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding. <i>Optics Express</i> , 2001 , 9, 714-20	3.3	129
128	Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs. <i>IEEE Journal of Quantum Electronics</i> , 2001 , 37, 199-206	2	94
127	Introduction to the issue on novel and specialty fibers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2001 , 7, 401-402	3.8	1
126	Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings. <i>IEEE Photonics Technology Letters</i> , 2001 , 13, 154-156	2.2	29
125	Assignment of haem ligands and detection of electronic absorption bands of molybdenum in the di-haem periplasmic nitrate reductase of Paracoccus pantotrophus. <i>FEBS Letters</i> , 2001 , 500, 71-4	3.8	11
124	Holey fibres: properties, applications and future directions 2001,		1
123	Exploring the optical properties of holey fibres. AIP Conference Proceedings, 2001,	Ο	3
122	The fabrication and modelling of non-silica microstructured optical fibres 2001,		1
121	A highly nonlinear holey fiber and its application in a regenerative optical switch 2001 ,		
	, which is the control of the contro		2
120	The light-induced structural phase transition in confining gallium and its photonic applications. Journal of Luminescence, 2000, 87-89, 646-648	3.8	2
120	The light-induced structural phase transition in confining gallium and its photonic applications.	3.8 7·4	
	The light-induced structural phase transition in confining gallium and its photonic applications. Journal of Luminescence, 2000, 87-89, 646-648 Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal. Physical Review		2
119	The light-induced structural phase transition in confining gallium and its photonic applications. Journal of Luminescence, 2000, 87-89, 646-648 Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal. Physical Review Letters, 2000, 84, 4345-8 Cross-phase modulation effects in nonlinear fiber Bragg gratings. Journal of the Optical Society of	7.4	356
119	The light-induced structural phase transition in confining gallium and its photonic applications. Journal of Luminescence, 2000, 87-89, 646-648 Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal. Physical Review Letters, 2000, 84, 4345-8 Cross-phase modulation effects in nonlinear fiber Bragg gratings. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 345	7·4 1.7	2 356 10
119 118 117	The light-induced structural phase transition in confining gallium and its photonic applications. <i>Journal of Luminescence</i> , 2000 , 87-89, 646-648 Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal. <i>Physical Review Letters</i> , 2000 , 84, 4345-8 Cross-phase modulation effects in nonlinear fiber Bragg gratings. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2000 , 17, 345 Modeling large air fraction holey optical fibers. <i>Journal of Lightwave Technology</i> , 2000 , 18, 50-56	7·4 1.7 4	2 356 10
119 118 117 116	The light-induced structural phase transition in confining gallium and its photonic applications. Journal of Luminescence, 2000, 87-89, 646-648 Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal. Physical Review Letters, 2000, 84, 4345-8 Cross-phase modulation effects in nonlinear fiber Bragg gratings. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 345 Modeling large air fraction holey optical fibers. Journal of Lightwave Technology, 2000, 18, 50-56 High-energy, high-power ytterbium-doped Q-switched fiber laser. Optics Letters, 2000, 25, 37-9	7·4 1.7 4	2 356 10 144 129

112	Spectral features associated with nonlinear pulse compression in Bragg gratings. <i>Optics Letters</i> , 2000 , 25, 740-2	3	10
111	Light-induced specular-reflectivity suppression at a gallium/silica interface. <i>Optics Letters</i> , 2000 , 25, 159	4-6	4
110	Propagation of cold atoms along a miniature magnetic guide. <i>Physical Review Letters</i> , 2000 , 84, 1371-3	7.4	136
109	Chalcogenide holey fibres. <i>Electronics Letters</i> , 2000 , 36, 1998	1.1	149
108	Assorted core air-clad fibre. <i>Electronics Letters</i> , 2000 , 36, 2065	1.1	2
107	Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. <i>Microbiology (United Kingdom)</i> , 2000 , 146 (Pt 11), 2977-2985	2.9	55
106	Shaping of soliton- into rectangular-pulses using a superstructure fiber Bragg grating 1999 , AD1		
105	Efficient modelling of holey fibers 1999 ,		4
104	A robust, large air fill fraction holey fibre 1999 ,		1
103	Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror. <i>Optics Communications</i> , 1999 , 166, 239-243	2	9
102	Open conformation of a flavocytochrome c3 fumarate reductase. <i>Nature Structural Biology</i> , 1999 , 6, 110)4-7	61
102	Open conformation of a flavocytochrome c3 fumarate reductase. <i>Nature Structural Biology</i> , 1999 , 6, 110 Large Mode Area Fibers for High Power Applications. <i>Optical Fiber Technology</i> , 1999 , 5, 185-196)4-7 2.4	61 89
101	Large Mode Area Fibers for High Power Applications. <i>Optical Fiber Technology</i> , 1999 , 5, 185-196	2.4	89
101	Large Mode Area Fibers for High Power Applications. <i>Optical Fiber Technology</i> , 1999 , 5, 185-196 Developing holey fibres for evanescent field devices. <i>Electronics Letters</i> , 1999 , 35, 1188 Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror. <i>Applied Physics</i>	2.4 1.1 3.4	89
101 100 99	Large Mode Area Fibers for High Power Applications. <i>Optical Fiber Technology</i> , 1999 , 5, 185-196 Developing holey fibres for evanescent field devices. <i>Electronics Letters</i> , 1999 , 35, 1188 Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror. <i>Applied Physics Letters</i> , 1999 , 74, 3619-3621 Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase	2.4 1.1 3.4	89 117 43
101 100 99 98	Large Mode Area Fibers for High Power Applications. <i>Optical Fiber Technology</i> , 1999 , 5, 185-196 Developing holey fibres for evanescent field devices. <i>Electronics Letters</i> , 1999 , 35, 1188 Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror. <i>Applied Physics Letters</i> , 1999 , 74, 3619-3621 Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. <i>Biochemistry</i> , 1999 , 38, 9000-74.	2.4 1.1 3.4	89 117 43 89

94	Noise properties and phase resolution of interferometer systems interrogated by narrowband fiber ASE sources. <i>Journal of Lightwave Technology</i> , 1999 , 17, 2327-2335	4	30
93	Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers. <i>Optics Letters</i> , 1999 , 24, 208-10	3	75
92	Passively Q-switched 0.1-mJ fiber laser system at 1.53 mum. <i>Optics Letters</i> , 1999 , 24, 388-90	3	189
91	High-power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings. <i>Optics Letters</i> , 1999 , 24, 566-8	3	25
90	Nonlinear propagation effects in an AlGaAs Bragg grating filter. Optics Letters, 1999, 24, 685-7	3	87
89	Parametric oscillator directly pumped by a 1.55-mum erbium-fiber laser. <i>Optics Letters</i> , 1999 , 24, 975-7	3	17
88	Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization. <i>Optics Letters</i> , 1999 , 24, 1203-5	3	111
87	Nonlinearity in holey optical fibers: measurement and future opportunities. <i>Optics Letters</i> , 1999 , 24, 1395-7	3	225
86	Nonlinearity in holey optical fibers: measurement and future opportunities-errata. <i>Optics Letters</i> , 1999 , 24, 1647	3	1
85	Soliton Effects in an AlGaAs Bragg Grating. Optics and Photonics News, 1999 , 10, 43	1.9	4
8 ₅	Soliton Effects in an AlGaAs Bragg Grating. <i>Optics and Photonics News</i> , 1999 , 10, 43 Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. <i>Biochemical Journal</i> , 1999 , 342, 439-448	3.8	58
Í	Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by		
84	Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. <i>Biochemical Journal</i> , 1999 , 342, 439-448		58
84	Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. <i>Biochemical Journal</i> , 1999 , 342, 439-448 HeXLN: A 2-Dimensional nonlinear photonic crystal 1999 , Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a	3.8	58
84 83 82	Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. <i>Biochemical Journal</i> , 1999 , 342, 439-448 HeXLN: A 2-Dimensional nonlinear photonic crystal 1999 , Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber:periodically poled lithium niobate source. <i>Optics Letters</i> , 1998 , 23, 162-4 All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating. <i>Optics Letters</i>	3.8	58 1 40
8 ₄ 8 ₃ 8 ₂ 8 ₁	Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. <i>Biochemical Journal</i> , 1999 , 342, 439-448 HeXLN: A 2-Dimensional nonlinear photonic crystal 1999 , Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber:periodically poled lithium niobate source. <i>Optics Letters</i> , 1998 , 23, 162-4 All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating. <i>Optics Letters</i> , 1998 , 23, 259-61 Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating. <i>Optics Letters</i> ,	3.8	58 1 40 56
84 83 82 81 80	Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. <i>Biochemical Journal</i> , 1999, 342, 439-448 HeXLN: A 2-Dimensional nonlinear photonic crystal 1999, Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber:periodically poled lithium niobate source. <i>Optics Letters</i> , 1998, 23, 162-4 All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating. <i>Optics Letters</i> , 1998, 23, 259-61 Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating. <i>Optics Letters</i> , 1998, 23, 328-30 Optical parametric oscillation in periodically poled lithium niobate driven by a diode-pumped	3.8 3 3	58 1 40 56 117

76	High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber. <i>Optics Letters</i> , 1998 , 23, 1683-5	3	99
75	Nonlinear switching in fibre Bragg gratings. <i>Optics Express</i> , 1998 , 3, 447-53	3.3	32
74	Power scaling in passively mode-locked large-mode area fiber lasers. <i>IEEE Photonics Technology Letters</i> , 1998 , 10, 1718-1720	2.2	23
73	A photonic switch based on a gigantic, reversible optical nonlinearity of liquefying gallium. <i>Applied Physics Letters</i> , 1998 , 73, 1787-1789	3.4	40
72	Efficient harmonic generation with large-mode-area fiber sources 1998,		1
71	Light-Induced Structural Phase Transition in Confining Gallium and Associated Gigantic Optical Nonlinearity. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 543, 275		
70	European Union ACTS Project MIDAS: Objectives and Progress to Date. <i>Solid-state Science and Technology Library</i> , 1998 , 459-471		
69	Q-switched erbium doped fibre laser utilising a novel large mode area fibre. <i>Electronics Letters</i> , 1997 , 33, 393	1.1	36
68	Optical Pulse Compression in Fiber Bragg Gratings. <i>Physical Review Letters</i> , 1997 , 79, 4566-4569	7.4	52
67	All-fiber acoustooptic filter with low-polarization sensitivity and no frequency shift. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 461-463	2.2	6
66	Distributed dispersion measurements and control within continuously varying dispersion tapered fibers. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 1511-1513	2.2	5
65	Diode-pumped, high-energy, single transverse mode Q-switch fibre laser. <i>Electronics Letters</i> , 1997 , 33, 1955	1.1	18
64	Low-loss all-fiber acousto-optic tunable filter. <i>Optics Letters</i> , 1997 , 22, 96-8	3	12
63	Stretched pulse Yb(3+)silica fiber laser. <i>Optics Letters</i> , 1997 , 22, 316-8	3	63
62	158-microJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier. <i>Optics Letters</i> , 1997 , 22, 378-80	3	114
61	Experimental observation of nonlinear pulse compression in nonuniform Bragg gratings. <i>Optics Letters</i> , 1997 , 22, 1837-9	3	27
60	Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 1087-1096	3.8	42
59	Bacterial Cadmium Sulfide Semiconductor Particles: An Assessment of their Photoactivity by EPR Spectroscopy. <i>Photochemistry and Photobiology</i> , 1997 , 65, 811-817	3.6	8

58	Identification of an assimilatory nitrate reductase in mutants of Paracoccus denitrificans GB17 deficient in nitrate respiration. <i>Archives of Microbiology</i> , 1997 , 167, 61-6	3	29
57	Experimental demonstration of intermodal dispersion in a two-core optical fibre. <i>Optics Communications</i> , 1997 , 143, 189-192	2	42
56	Effect of carbon substrate and aeration on nitrate reduction and expression of the periplasmic and membrane-bound nitrate reductases in carbon-limited continuous cultures of Pd1222. <i>Microbiology (United Kingdom)</i> , 1997 , 143, 3767-3774	2.9	40
55	Periodically amplified system based on loss compensating dispersion decreasing fibre. <i>Electronics Letters</i> , 1996 , 32, 373	1.1	15
54	The influence of chelating agents upon the dissimilatory reduction of Fe(III) byShewanella putrefaciens. Part 2. Oxo-and hydroxo-bridged polynuclear Fe(III) complexes. <i>BioMetals</i> , 1996 , 9, 291-30) ^{3.4}	13
53	Dissimilatory iron(III) reduction by. <i>Microbiology (United Kingdom)</i> , 1996 , 142, 765-774	2.9	42
52	Dispersion Decreasing Fibres for Soliton Generation and Transmission Line Loss Compensation. Solid-state Science and Technology Library, 1996 , 277-291		2
51	High Frequency Bright and Dark Soliton Sources Based on Dispersion Profiled Fibre Circuitry and Their Applications 1996 , 157-160		
50	The influence of chelating agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens. <i>BioMetals</i> , 1995 , 8, 163	3.4	23
49	Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. <i>Molecular Microbiology</i> , 1995 , 15, 319-31	4.1	128
48	All-optical modulation of 40 GHz beat frequency conversion soliton source. <i>Electronics Letters</i> , 1995 , 31, 1362-1364	1.1	7
47	Demonstration of 205 km transmission of 35 GHz, 5 ps pulses generated from a diode-driven, low-jitter, beat-signal to soliton train conversion source. <i>Electronics Letters</i> , 1995 , 31, 470-472	1.1	7
46	Dispersion compensation of 16 ps pulses over 100 km of step-index fibre using cascaded chirped fibre gratings. <i>Electronics Letters</i> , 1995 , 31, 1004-1006	1.1	3
45	Experimental investigation of picosecond pulse reflection from fiber gratings. <i>Optics Letters</i> , 1995 , 20, 282-4	3	12
44	All-fiber sliding-frequency Er (3+) / Yb (3+) soliton laser. Optics Letters, 1995, 20, 2381	3	26
43	Investigation of fiber grating-based performance limits in pulse stretching and recompression schemes using bidirectional reflection from a linearly chirped fiber grating. <i>IEEE Photonics Technology Letters</i> , 1995 , 7, 1436-1438	2.2	9
42	High quality soliton loss-compensation in 38 km dispersion-decreasing fibre. <i>Electronics Letters</i> , 1995 , 31, 1681-1682	1.1	29
41	Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fibre. <i>Electronics Letters</i> , 1994 , 30, 1326-1327	1.1	52

40	Effects of gravity on the storage of ultracold neutrons. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1994 , 337, 504-5	11 ^{1.2}	12
39	Mo(V) electron paramagnetic resonance signals from the periplasmic nitrate reductase of Thiosphaera pantotropha. <i>FEBS Journal</i> , 1994 , 226, 789-98		45
38	. IEEE Photonics Technology Letters, 1994 , 6, 1380-1382	2.2	10
37	Characterization of the paramagnetic iron-containing redox centres of Thiosphaera pantotropha periplasmic nitrate reductase. <i>FEBS Letters</i> , 1994 , 345, 76-80	3.8	50
36	Transmission of 6 ps linear pulses over 50 km of standard fiber using midpoint spectral inversion to eliminate dispersion. <i>IEEE Journal of Quantum Electronics</i> , 1994 , 30, 2114-2119	2	6
35	. IEEE Photonics Technology Letters, 1993 , 5, 492-494	2.2	28
34	114 Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat signal in dispersion decreasing optical fiber. <i>Applied Physics Letters</i> , 1993 , 63, 293-295	3.4	56
33	Passive harmonic modelocking of a fibre soliton ring laser. <i>Electronics Letters</i> , 1993 , 29, 1860	1.1	129
32	Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution. <i>Optics Letters</i> , 1993 , 18, 358-60	3	87
31	Soliton pulse compression in dispersion-decreasing fiber. <i>Optics Letters</i> , 1993 , 18, 476-8	3	158
30	Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation. <i>Electronics Letters</i> , 1992 , 28, 1391	1.1	339
29	Measurement of group birefringence and dispersion of polarisation maintaining erbium-doped silica fibre. <i>Electronics Letters</i> , 1992 , 28, 2140	1.1	1
28	Picosecond soliton pulse compressor based on dispersion decreasing fibre. <i>Electronics Letters</i> , 1992 , 28, 1842	1.1	54
27	Passive, all-fibre source of 30 fs pulses. <i>Electronics Letters</i> , 1992 , 28, 778	1.1	16
26	70 Gbit/s fibre based source of fundamental solitons at 1550 nm. <i>Electronics Letters</i> , 1992 , 28, 1210	1.1	28
25	Nd:YAG laser pumped picosecond Yb3+/Er3+ fibre laser. <i>Electronics Letters</i> , 1992 , 28, 766	1.1	4
24	Energy quantisation in figure eight fibre laser. <i>Electronics Letters</i> , 1992 , 28, 67-68	1.1	174
23	Amplification of femtosecond pulses in a passive, all-fiber soliton source. <i>Optics Letters</i> , 1992 , 17, 1596	5-83	31

22	Switching and passive mode-locking of fiber lasers using nonlinear loop mirrors (Invited Paper) 1992,		2
21	Pulse repetition rates in passive, selfstarting, femtosecond soliton fibre laser. <i>Electronics Letters</i> , 1991 , 27, 1451	1.1	74
20	Measurement of the energy dependence of the neutron loss per bounce function on reflection from oil and grease surfaces using monochromatic ultracold neutrons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated	1.2	19
19	Equipment, 1991, 308, 568-573 320 fs soliton generation with passively mode-locked erbium fibre laser. <i>Electronics Letters</i> , 1991, 27, 730	1.1	133
18	Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch. <i>Electronics Letters</i> , 1991 , 27, 542	1.1	124
17	A search for the electric dipole moment of the neutron. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1990 , 234, 191-196	4.2	306
16	Very low threshold Sagnac switch incorporating an erbium doped fibre amplifier. <i>Electronics Letters</i> , 1990 , 26, 1779	1.1	27
15	Demonstrations of Berry's phase using polarised neutrons. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1989 , 284, 192-196	1.2	5
14	Demonstration of Berry's phase using stored ultra-cold neutrons. <i>Physical Review Letters</i> , 1988 , 61, 20	30 7 203	3 99
13	Supercontinuum generation and nonlinearity in soft glass fibres82-118		2
12	Wavelength-swept fiber laser with frequency-shifted feedback		2
11	Buried slab waveguides in LiNbO/sub 3/ nonlinear photonic crystals		1
10	Intensity noise reduction of incoherent light using semiconductor optical amplifiers		2
9	Proton-exchanged LiNbO/sub 3/ waveguides for photonic applications		1
8	A 16-channel OCDMA system (4 OCDM /spl times/ 4 WDM) based on 16-chip, 20 Gchip/s superstructure fibre Bragg gratings and DFB fibre laser transmitters		4
7	A 4-channel WDM/OCDMA system incorporating 255-chip, 320 Gchip/s quaternary phase coding and decoding gratings		2
6	Demonstration of a simple CDMA transmitter and receiver using sampled fibre gratings		7
5	Multi-mJ, multi-watt Q-switched fiber laser		2

4	Broadband optical switching in confined gallium at milliwatt power levels	1
3	High performance, 64-chip, 160 Gchip/s fiber grating based OCDMA receiver incorporating a nonlinear optical loop mirror	2
2	Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment	3
1	Development of Highly Nonlinear Extruded Lead Silicate Holey Fibers with Novel Dispersive Properties. <i>Ceramic Transactions</i> ,1-9	0.1